These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 37534944)

  • 1. Revealing Temperature-Dependent Oxidation Dynamics of Ni Nanoparticles via Ambient Pressure Transmission Electron Microscopy.
    You R; Ou Y; Qi R; Yu J; Wang F; Jiang Y; Zou S; Han ZK; Yuan W; Yang H; Zhang Z; Wang Y
    Nano Lett; 2023 Aug; 23(16):7260-7266. PubMed ID: 37534944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Gas-Solid Reaction Kinetics of Nanoparticles Unveiled by Millisecond In Situ Electron Diffraction at Ambient Pressure.
    Yu J; Yuan W; Yang H; Xu Q; Wang Y; Zhang Z
    Angew Chem Int Ed Engl; 2018 Aug; 57(35):11344-11348. PubMed ID: 29979826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy.
    Zhang D; Jin C; Li ZY; Zhang Z; Li J
    Sci Bull (Beijing); 2017 Jun; 62(11):775-778. PubMed ID: 36659273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ environmental transmission electron microscopy to determine transformation pathways in supported Ni nanoparticles.
    Chenna S; Crozier PA
    Micron; 2012 Nov; 43(11):1188-94. PubMed ID: 22721962
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Sharna S; Bahri M; Bouillet C; Rouchon V; Lambert A; Gay AS; Chiche D; Ersen O
    Nanoscale; 2021 Jun; 13(21):9747-9756. PubMed ID: 34019612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.
    Railsback JG; Johnston-Peck AC; Wang J; Tracy JB
    ACS Nano; 2010 Apr; 4(4):1913-20. PubMed ID: 20361781
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Sainju R; Rathnayake D; Tan H; Bollas G; Dongare AM; Suib SL; Zhu Y
    ACS Nano; 2022 Apr; 16(4):6468-6479. PubMed ID: 35413193
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Song B; Yang Y; Rabbani M; Yang TT; He K; Hu X; Yuan Y; Ghildiyal P; Dravid VP; Zachariah MR; Saidi WA; Liu Y; Shahbazian-Yassar R
    ACS Nano; 2020 Nov; 14(11):15131-15143. PubMed ID: 33079522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ oxidation and reduction of triangular nickel nanoplates via environmental transmission electron microscopy.
    Lagrow AP; Alyami NM; Lloyd DC; Bakr OM; Boyes ED; Gai PL
    J Microsc; 2018 Feb; 269(2):161-167. PubMed ID: 28850665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing High-Temperature Reduction Dynamics of High-Entropy Alloy Nanoparticles
    Song B; Yang Y; Yang TT; He K; Hu X; Yuan Y; Dravid VP; Zachariah MR; Saidi WA; Liu Y; Shahbazian-Yassar R
    Nano Lett; 2021 Feb; 21(4):1742-1748. PubMed ID: 33570961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revealing Surface Elemental Composition and Dynamic Processes Involved in Facet-Dependent Oxidation of Pt
    Dai S; Hou Y; Onoue M; Zhang S; Gao W; Yan X; Graham GW; Wu R; Pan X
    Nano Lett; 2017 Aug; 17(8):4683-4688. PubMed ID: 28686034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct in Situ TEM Observation of Modification of Oxidation by the Injected Vacancies for Ni-4Al Alloy Using a Microfabricated Nanopost.
    Wang CM; Schreiber DK; Olszta MJ; Baer DR; Bruemmer SM
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17272-7. PubMed ID: 26186484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy.
    Xia W; Yang Y; Meng Q; Deng Z; Gong M; Wang J; Wang D; Zhu Y; Sun L; Xu F; Li J; Xin HL
    ACS Nano; 2018 Aug; 12(8):7866-7874. PubMed ID: 30080965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revealing bismuth oxide hollow nanoparticle formation by the Kirkendall effect.
    Niu KY; Park J; Zheng H; Alivisatos AP
    Nano Lett; 2013; 13(11):5715-9. PubMed ID: 24131312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.
    LaGrow AP; Ward MR; Lloyd DC; Gai PL; Boyes ED
    J Am Chem Soc; 2017 Jan; 139(1):179-185. PubMed ID: 27936677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.
    Susman MD; Feldman Y; Bendikov TA; Vaskevich A; Rubinstein I
    Nanoscale; 2017 Aug; 9(34):12573-12589. PubMed ID: 28820220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale model of metal alloy oxidation at grain boundaries.
    Sushko ML; Alexandrov V; Schreiber DK; Rosso KM; Bruemmer SM
    J Chem Phys; 2015 Jun; 142(21):214114. PubMed ID: 26049486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guidance from an in situ hot stage in TEM to synthesize magnetic metal nanoparticles from a MOF.
    Xu D; Zhang D; Zou H; Zhu L; Xue M; Fang Q; Qiu S
    Chem Commun (Camb); 2016 Aug; 52(69):10513-6. PubMed ID: 27491946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic Layer Deposited Ni/ZrO
    Adebayo BO; Newport K; Yu H; Rownaghi AA; Liang X; Rezaei F
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39318-39334. PubMed ID: 32805859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.