These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 37534994)

  • 1. Optimizing the Synthetic Potential of O
    Stamoulis AG; Bruns DL; Stahl SS
    J Am Chem Soc; 2023 Aug; 145(32):17515-17526. PubMed ID: 37534994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst.
    McCann SD; Stahl SS
    Acc Chem Res; 2015 Jun; 48(6):1756-66. PubMed ID: 26020118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Potential Electrocatalytic O2 Reduction with Nitroxyl/NO x Mediators: Implications for Fuel Cells and Aerobic Oxidation Catalysis.
    Gerken JB; Stahl SS
    ACS Cent Sci; 2015 Aug; 1(5):234-43. PubMed ID: 27162977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developing Scaling Relationships for Molecular Electrocatalysis through Studies of Fe-Porphyrin-Catalyzed O
    Martin DJ; Wise CF; Pegis ML; Mayer JM
    Acc Chem Res; 2020 May; 53(5):1056-1065. PubMed ID: 32281786
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthetic applications of nonmetal catalysts for homogeneous oxidations.
    Adam W; Saha-Möller CR; Ganeshpure PA
    Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical Oxidation of Organic Molecules at Lower Overpotential: Accessing Broader Functional Group Compatibility with Electron-Proton Transfer Mediators.
    Wang F; Stahl SS
    Acc Chem Res; 2020 Mar; 53(3):561-574. PubMed ID: 32049487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming the "oxidant problem": strategies to use O2 as the oxidant in organometallic C-H oxidation reactions catalyzed by Pd (and Cu).
    Campbell AN; Stahl SS
    Acc Chem Res; 2012 Jun; 45(6):851-63. PubMed ID: 22263575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of Copper/Azodicarboxylate-Catalyzed Aerobic Alcohol Oxidation: Evidence for Uncooperative Catalysis.
    McCann SD; Stahl SS
    J Am Chem Soc; 2016 Jan; 138(1):199-206. PubMed ID: 26694091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis by unsupported skeletal gold catalysts.
    Wittstock A; Bäumer M
    Acc Chem Res; 2014 Mar; 47(3):731-9. PubMed ID: 24266888
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Use of Molecular Oxygen for Liquid Phase Aerobic Oxidations in Continuous Flow.
    Hone CA; Kappe CO
    Top Curr Chem (Cham); 2018 Dec; 377(1):2. PubMed ID: 30536152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic study of alcohol oxidation by the Pd(OAc)(2)/O(2)/DMSO catalyst system and implications for the development of improved aerobic oxidation catalysts.
    Steinhoff BA; Fix SR; Stahl SS
    J Am Chem Soc; 2002 Feb; 124(5):766-7. PubMed ID: 11817948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidase catalysis via aerobically generated hypervalent iodine intermediates.
    Maity A; Hyun SM; Powers DC
    Nat Chem; 2018 Feb; 10(2):200-204. PubMed ID: 29359760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: catalyst development meets reactor design.
    Lechner M; Güttel R; Streb C
    Dalton Trans; 2016 Nov; 45(42):16716-16726. PubMed ID: 27604580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scaling Relation between the Reduction Potential of Copper Catalysts and the Turnover Frequency for the Oxygen and Hydrogen Peroxide Reduction Reactions.
    Langerman M; van Langevelde PH; van de Vijver JJ; Siegler MA; Hetterscheid DGH
    Inorg Chem; 2023 Dec; 62(48):19593-19602. PubMed ID: 37976110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ligand-Promoted Palladium-Catalyzed Aerobic Oxidation Reactions.
    Wang D; Weinstein AB; White PB; Stahl SS
    Chem Rev; 2018 Mar; 118(5):2636-2679. PubMed ID: 28975795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steering Catalytic Selectivity with Atomically Dispersed Metal Electrocatalysts for Renewable Energy Conversion and Commodity Chemical Production.
    Kim JH; Sa YJ; Lim T; Woo J; Joo SH
    Acc Chem Res; 2022 Sep; 55(18):2672-2684. PubMed ID: 36067418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brønsted Acid Scaling Relationships Enable Control Over Product Selectivity from O
    Wang YH; Schneider PE; Goldsmith ZK; Mondal B; Hammes-Schiffer S; Stahl SS
    ACS Cent Sci; 2019 Jun; 5(6):1024-1034. PubMed ID: 31263762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation and Mobilization of Copper Active Sites in Zeolites by Ammonia: Consequences for the Catalytic Reduction of Nitrogen Oxides.
    Paolucci C; Di Iorio JR; Schneider WF; Gounder R
    Acc Chem Res; 2020 Sep; 53(9):1881-1892. PubMed ID: 32786332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.