These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37535021)

  • 1. Predicting chaotic statistics with unstable invariant tori.
    Parker JP; Ashtari O; Schneider TM
    Chaos; 2023 Aug; 33(8):. PubMed ID: 37535021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Invariant tori in dissipative hyperchaos.
    Parker JP; Schneider TM
    Chaos; 2022 Nov; 32(11):113102. PubMed ID: 36456339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing periodic orbits of high-dimensional chaotic systems by an adjoint-based variational method.
    Azimi S; Ashtari O; Schneider TM
    Phys Rev E; 2022 Jan; 105(1-1):014217. PubMed ID: 35193314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Jacobian-free variational method for computing connecting orbits in nonlinear dynamical systems.
    Ashtari O; Schneider TM
    Chaos; 2023 Jul; 33(7):. PubMed ID: 37459217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of chaotic saddles by classification of unstable periodic orbits: Kuramoto-Sivashinsky equation.
    Saiki Y; Yamada M; Chian AC; Miranda RA; Rempel EL
    Chaos; 2015 Oct; 25(10):103123. PubMed ID: 26520089
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Periodic orbit analysis at the onset of the unstable dimension variability and at the blowout bifurcation.
    Pereira RF; de S Pinto SE; Viana RL; Lopes SR; Grebogi C
    Chaos; 2007 Jun; 17(2):023131. PubMed ID: 17614685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing chaos in systems subjected to parameter drift.
    Jánosi D; Tél T
    Phys Rev E; 2022 Jun; 105(6):L062202. PubMed ID: 35854578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unstable periodic orbits and the natural measure of nonhyperbolic chaotic saddles.
    Dhamala M; Lai YC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Nov; 60(5 Pt B):6176-9. PubMed ID: 11970527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity of long periodic orbits of chaotic systems.
    Lasagna D
    Phys Rev E; 2020 Nov; 102(5-1):052220. PubMed ID: 33327162
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics.
    Lan Y; Cvitanović P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 2):026208. PubMed ID: 18850922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comment on "Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems".
    Zaks MA; Goldobin DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):018201; discussion 018202. PubMed ID: 20365510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intermittency induced by attractor-merging crisis in the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016203. PubMed ID: 15697694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamical behaviors and invariant recurrent patterns of Kuramoto-Sivashinsky equation with time-periodic forces.
    Liu D
    Chaos; 2024 Jul; 34(7):. PubMed ID: 39038470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Statistical characteristics, circulation regimes and unstable periodic orbits of a barotropic atmospheric model.
    Gritsun A
    Philos Trans A Math Phys Eng Sci; 2013 May; 371(1991):20120336. PubMed ID: 23588051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven modeling and forecasting of chaotic dynamics on inertial manifolds constructed as spectral submanifolds.
    Liu A; Axås J; Haller G
    Chaos; 2024 Mar; 34(3):. PubMed ID: 38531092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Moving finite-size particles in a flow: a physical example of pitchfork bifurcations of tori.
    Zahnow JC; Feudel U
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026215. PubMed ID: 18352111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics in the Vicinity of the Stable Halo Orbits.
    Lujan D; Scheeres DJ
    J Astronaut Sci; 2023; 70(4):20. PubMed ID: 37388626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the Dimension of an Inertial Manifold from Unstable Periodic Orbits.
    Ding X; Chaté H; Cvitanović P; Siminos E; Takeuchi KA
    Phys Rev Lett; 2016 Jul; 117(2):024101. PubMed ID: 27447508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of chaotic saddles in high-dimensional dynamical systems: the Kuramoto-Sivashinsky equation.
    Rempel EL; Chian AC; Macau EE; Rosa RR
    Chaos; 2004 Sep; 14(3):545-56. PubMed ID: 15446964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-averaged properties of unstable periodic orbits and chaotic orbits in ordinary differential equation systems.
    Saiki Y; Yamada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):015201. PubMed ID: 19257096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.