These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3753508)

  • 1. Adenine nucleotides, glutamate and respiratory function of heart mitochondria during acute hypoxia.
    Pisarenko OI; Studneva IM; Solomatina ES; Kapelko VI
    Biochem Int; 1986 Jul; 13(1):51-8. PubMed ID: 3753508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Relation between glutamate and adenine nucleotide levels of heart mitochondria during hypoxia].
    Pisarenko OI; Solomatina ES; Studneva IM
    Biokhimiia; 1987 Apr; 52(4):543-9. PubMed ID: 3593788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The relationship between the cardiac contractile function, adenine nucleotides and amino acids of cardiac tissue and mitochondria at acute respiratory hypoxia.
    Pisarenko OI; Solomatina ES; Studneva IM; Kapelko VI
    Pflugers Arch; 1987 Jun; 409(1-2):169-74. PubMed ID: 3615164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intramitochondrial adenine nucleotides and energy-linked functions of heart mitochondria.
    Asimakis GK; Sordahl LA
    Am J Physiol; 1981 Nov; 241(5):H672-8. PubMed ID: 6272586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myocardial ischemia: correlation of mitochondrial adenine nucleotide and respiratory function.
    Asimakis GK; Conti VR
    J Mol Cell Cardiol; 1984 May; 16(5):439-47. PubMed ID: 6737484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic and mitochondrial parameters during hypoxia and reoxygenation in working rat hearts.
    Freisleben HJ; Kriege H; Clarke C; Beyersdorf F; Zimmer G
    Arzneimittelforschung; 1991 Jan; 41(1):81-8. PubMed ID: 1710898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Mechanisms for improving the energy metabolism and function of the hypoxic myocardium with amino acids].
    Pisarenko OI; Studneva IM; Khlopkov VN; Solomatina ES; Ruuge EK
    Fiziol Zh SSSR Im I M Sechenova; 1988 Feb; 74(2):234-40. PubMed ID: 3371501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of hypoxia and reoxygenation on mitochondrial function in neonatal myocardium.
    Young HH; Shimizu T; Nishioka K; Nakanishi T; Jarmakani JM
    Am J Physiol; 1983 Dec; 245(6):H998-1006. PubMed ID: 6318574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiac nucleotide levels and mitochondrial respiration in copper-deficient rats.
    Chao JC; Medeiros DM; Altschuld RA; Hohl CM
    Comp Biochem Physiol Comp Physiol; 1993 Jan; 104(1):163-8. PubMed ID: 8094656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart.
    Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK
    Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial respiration following acute hypoxia in the perfused rat heart.
    Fuller EO; Goldberg DI; Starnes JW; Sacks LM; Delivoria-Papadopoulos M
    J Mol Cell Cardiol; 1985 Jan; 17(1):71-81. PubMed ID: 3989872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart.
    Nishiki K; Erecińska M; Wilson DF
    Am J Physiol; 1978 Mar; 234(3):C73-81. PubMed ID: 204195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulation of mitochondrial oxygen consumption in isolated cardiomyocytes after hypoxia-reoxygenation.
    Smith DR; Stone D; Darley-Usmar VM
    Free Radic Res; 1996 Mar; 24(3):159-66. PubMed ID: 8728117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of loss of adenine nucleotides from mitochondria during myocardial ischemia.
    Sandhu GS; Asimakis GK
    J Mol Cell Cardiol; 1991 Dec; 23(12):1423-35. PubMed ID: 1811058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of mitochondrial metabolism and protein synthesis in heart mitochondria.
    McKee EE; Grier BL; Thompson GS; Leung AC; McCourt JD
    Am J Physiol; 1990 Mar; 258(3 Pt 1):E503-10. PubMed ID: 2316644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of adenine mono- and dinucleotides in ammonia formation in brain tissue].
    Buniatian GKh
    Vopr Biokhim Mozga; 1975; 10():5-32. PubMed ID: 186942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.
    Hals IK; Bruerberg SG; Ma Z; Scholz H; Björklund A; Grill V
    PLoS One; 2015; 10(9):e0138558. PubMed ID: 26401848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Possible role of adenine nucleotide transport in regulating the respiration of rat liver mitochondria].
    Konstantinov IuM; Liakhovich VV; Panov AV
    Biull Eksp Biol Med; 1976 Feb; 81(2):166-8. PubMed ID: 1276407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neonatal hypoxia or maternal diabetes delays postnatal development of liver mitochondria.
    Aprille JR; Nosek MT
    Pediatr Res; 1987 Mar; 21(3):266-9. PubMed ID: 3562126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The contribution of adenine nucleotide loss to ischemia-induced impairment of rat kidney cortex mitochondria.
    Henke W; Nickel E
    Biochim Biophys Acta; 1992 Jan; 1098(2):233-9. PubMed ID: 1309655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.