These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Hemodynamic and mitochondrial parameters during hypoxia and reoxygenation in working rat hearts. Freisleben HJ; Kriege H; Clarke C; Beyersdorf F; Zimmer G Arzneimittelforschung; 1991 Jan; 41(1):81-8. PubMed ID: 1710898 [TBL] [Abstract][Full Text] [Related]
7. [Mechanisms for improving the energy metabolism and function of the hypoxic myocardium with amino acids]. Pisarenko OI; Studneva IM; Khlopkov VN; Solomatina ES; Ruuge EK Fiziol Zh SSSR Im I M Sechenova; 1988 Feb; 74(2):234-40. PubMed ID: 3371501 [TBL] [Abstract][Full Text] [Related]
8. Effect of hypoxia and reoxygenation on mitochondrial function in neonatal myocardium. Young HH; Shimizu T; Nishioka K; Nakanishi T; Jarmakani JM Am J Physiol; 1983 Dec; 245(6):H998-1006. PubMed ID: 6318574 [TBL] [Abstract][Full Text] [Related]
10. Subcellular distribution of malate-aspartate cycle intermediates during normoxia and anoxia in the heart. Wiesner RJ; Kreutzer U; Rösen P; Grieshaber MK Biochim Biophys Acta; 1988 Oct; 936(1):114-23. PubMed ID: 2902879 [TBL] [Abstract][Full Text] [Related]
11. Mitochondrial respiration following acute hypoxia in the perfused rat heart. Fuller EO; Goldberg DI; Starnes JW; Sacks LM; Delivoria-Papadopoulos M J Mol Cell Cardiol; 1985 Jan; 17(1):71-81. PubMed ID: 3989872 [TBL] [Abstract][Full Text] [Related]
12. Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart. Nishiki K; Erecińska M; Wilson DF Am J Physiol; 1978 Mar; 234(3):C73-81. PubMed ID: 204195 [TBL] [Abstract][Full Text] [Related]
13. Stimulation of mitochondrial oxygen consumption in isolated cardiomyocytes after hypoxia-reoxygenation. Smith DR; Stone D; Darley-Usmar VM Free Radic Res; 1996 Mar; 24(3):159-66. PubMed ID: 8728117 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of loss of adenine nucleotides from mitochondria during myocardial ischemia. Sandhu GS; Asimakis GK J Mol Cell Cardiol; 1991 Dec; 23(12):1423-35. PubMed ID: 1811058 [TBL] [Abstract][Full Text] [Related]
15. Coupling of mitochondrial metabolism and protein synthesis in heart mitochondria. McKee EE; Grier BL; Thompson GS; Leung AC; McCourt JD Am J Physiol; 1990 Mar; 258(3 Pt 1):E503-10. PubMed ID: 2316644 [TBL] [Abstract][Full Text] [Related]
16. [Role of adenine mono- and dinucleotides in ammonia formation in brain tissue]. Buniatian GKh Vopr Biokhim Mozga; 1975; 10():5-32. PubMed ID: 186942 [TBL] [Abstract][Full Text] [Related]
17. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia. Hals IK; Bruerberg SG; Ma Z; Scholz H; Björklund A; Grill V PLoS One; 2015; 10(9):e0138558. PubMed ID: 26401848 [TBL] [Abstract][Full Text] [Related]
18. [Possible role of adenine nucleotide transport in regulating the respiration of rat liver mitochondria]. Konstantinov IuM; Liakhovich VV; Panov AV Biull Eksp Biol Med; 1976 Feb; 81(2):166-8. PubMed ID: 1276407 [TBL] [Abstract][Full Text] [Related]
19. Neonatal hypoxia or maternal diabetes delays postnatal development of liver mitochondria. Aprille JR; Nosek MT Pediatr Res; 1987 Mar; 21(3):266-9. PubMed ID: 3562126 [TBL] [Abstract][Full Text] [Related]
20. The contribution of adenine nucleotide loss to ischemia-induced impairment of rat kidney cortex mitochondria. Henke W; Nickel E Biochim Biophys Acta; 1992 Jan; 1098(2):233-9. PubMed ID: 1309655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]