These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3753514)

  • 1. Amiodarone induced modifications of the phospholipid physical state. A fluorescence polarization study.
    Chatelain P; Ferreira J; Laruel R; Ruysschaert JM
    Biochem Pharmacol; 1986 Sep; 35(18):3007-13. PubMed ID: 3753514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionization state of amiodarone mediates its mode of interaction with lipid bilayers.
    Ferreira J; Chatelain P; Caspers J; Ruysschaert JM
    Biochem Pharmacol; 1987 Dec; 36(24):4245-50. PubMed ID: 3689449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amiodarone effects on membrane organization evaluated by fluorescence polarization.
    Antunes-Madeira MC; Videira RA; Klüppel ML; Madeira VV
    Int J Cardiol; 1995 Mar; 48(3):211-8. PubMed ID: 7782133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of amiodarone with model membranes and amiodarone-photoinduced peroxidation of lipids.
    Sautereau AM; Tournaire C; Suares M; Tocanne JF; Paillous N
    Biochem Pharmacol; 1992 Jun; 43(12):2559-66. PubMed ID: 1632814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amiodarone partitioning with phospholipid bilayers and erythrocyte membranes.
    Chatelain P; Laruel R
    J Pharm Sci; 1985 Jul; 74(7):783-4. PubMed ID: 4032255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of factor Va on lipid dynamics in mixed phospholipid vesicles as detected by steady-state and time-resolved fluorescence depolarization of diphenylhexatriene.
    van de Waart P; Visser AJ; Hemker HC; Lindhout T
    Eur J Biochem; 1987 Apr; 164(2):337-43. PubMed ID: 3569268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of amiodarone on membrane fluidity and Na+/K+ ATPase activity in rat-brain synaptic membranes.
    Chatelain P; Laruel R; Gillard M
    Biochem Biophys Res Commun; 1985 May; 129(1):148-54. PubMed ID: 2988546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid composition and dynamics of cell membranes of Bacillus stearothermophilus adapted to amiodarone.
    Rosa SM; Antunes-Madeira MC; Matos MJ; Jurado AS; Madeira VM
    Biochim Biophys Acta; 2000 Sep; 1487(2-3):286-95. PubMed ID: 11018480
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amiodarone-liposome interaction: a multinuclear NMR and X-ray diffraction study.
    Jendrasiak GL; McIntosh TJ; Ribeiro A; Porter RS
    Biochim Biophys Acta; 1990 May; 1024(1):19-31. PubMed ID: 2337615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic mismatch and long-range protein/lipid interactions in bacteriorhodopsin/phosphatidylcholine vesicles.
    Piknová B; Pérochon E; Tocanne JF
    Eur J Biochem; 1993 Dec; 218(2):385-96. PubMed ID: 8269927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amiodarone interactions with membrane lipids and with growth of Bacillus stearothermophilus used as a model.
    Rosa SM; Antunes-Madeira MC; Jurado AS; Madeira VV
    Appl Biochem Biotechnol; 2000 Jun; 87(3):165-75. PubMed ID: 10982227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutrality of amiodarone on the initiation and propagation of membrane lipid peroxidation.
    Mansani FP; Dinis TC; Carnieri EG; Madeira VM
    Cell Biochem Funct; 1999 Jun; 17(2):131-42. PubMed ID: 10377959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopic study of the interaction of saporin with phospholipid vesicles.
    Hao Q; Ding T; Zhang Y; Liu G; Yan L; Gao G; Yan G; Yao Q; Li Q
    Mol Membr Biol; 1997; 14(1):19-23. PubMed ID: 9160337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elevation of serum lipids after chronic administration of amiodarone in rabbits.
    Kannan R; Pollak A; Singh BN
    Atherosclerosis; 1982 Jul; 44(1):19-26. PubMed ID: 7115477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence polarization study of calcium and phase behaviour in synaptosomal lipids.
    Ashley RH; Brammer MJ
    Biochim Biophys Acta; 1984 Jan; 769(2):363-9. PubMed ID: 6696888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fluorescent sterol probe study of cholesterol/phospholipid membranes.
    Smutzer G
    Biochim Biophys Acta; 1988 Dec; 946(2):270-80. PubMed ID: 3207744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of 1,6-diphenyl-1,3,5-hexatriene fluorescence in phophoslipid artificial membranes.
    Andrich MP; Vanderkooi JM
    Biochemistry; 1976 Mar; 15(6):1257-61. PubMed ID: 1252446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of fatty acid unsaturation and physical properties of microsomal membrane phospholipids on UDP-glucuronyltransferase activity.
    Castuma CE; Brenner RR
    Biochem J; 1989 Mar; 258(3):723-31. PubMed ID: 2499306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation into the fluidity of lipopolysaccharide and free lipid A membrane systems by Fourier-transform infrared spectroscopy and differential scanning calorimetry.
    Brandenburg K; Seydel U
    Eur J Biochem; 1990 Jul; 191(1):229-36. PubMed ID: 2199198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes.
    Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN
    Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.