These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 37535467)

  • 1. Microparticle Manipulation Performed on a Swirl-Based Microfluidic Chip Featured by Dual-Stagnation Points.
    Dang Y; Hu S; Ou Z; Zhang Q
    Langmuir; 2023 Aug; 39(32):11245-11258. PubMed ID: 37535467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the capturing ability of swirl-based microfluidic chip by introducing baffle wall.
    Dang Y; Zhang Q; Ou Z; Hu S
    Biotechnol Appl Biochem; 2024 Apr; 71(2):336-355. PubMed ID: 38082547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle sorting method based on swirl induction.
    Hu S; Zhang Q; Ou Z; Dang Y
    J Chem Phys; 2023 Nov; 159(17):. PubMed ID: 37909455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Microfluidic Chip for Single-Cell Capture Based on Stagnation Point Flow and Boundary Effects.
    Cheng L; Lv X; Zhou W; Li H; Yang Q; Chen X; Wu Y
    Micromachines (Basel); 2024 Mar; 15(4):. PubMed ID: 38675267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microfluidic-based hydrodynamic trap for single particles.
    Johnson-Chavarria EM; Tanyeri M; Schroeder CM
    J Vis Exp; 2011 Jan; (47):. PubMed ID: 21304467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical Study of Viscoelastic Microfluidic Particle Manipulation in a Microchannel with Asymmetrical Expansions.
    Wang T; Yuan D; Wan W; Zhang B
    Micromachines (Basel); 2023 Apr; 14(5):. PubMed ID: 37241539
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapping of a Single Microparticle Using AC Dielectrophoresis Forces in a Microfluidic Chip.
    Wang Y; Tong N; Li F; Zhao K; Wang D; Niu Y; Xu F; Cheng J; Wang J
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic-based hydrodynamic trap: design and implementation.
    Tanyeri M; Ranka M; Sittipolkul N; Schroeder CM
    Lab Chip; 2011 May; 11(10):1786-94. PubMed ID: 21479293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and experimental investigation of a novel spiral microfluidic chip to separate wide size range of micro-particles aimed at cell separation.
    Tabatabaei SA; Zabetian Targhi M
    Proc Inst Mech Eng H; 2021 Nov; 235(11):1315-1328. PubMed ID: 34218740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping and releasing of single microparticles and cells in a microfluidic chip.
    Lv D; Zhang X; Xu M; Cao W; Liu X; Deng J; Yang J; Hu N
    Electrophoresis; 2022 Nov; 43(21-22):2165-2174. PubMed ID: 35730632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electric split-ring metamaterial based microfluidic chip with multi-resonances for microparticle trapping and chemical sensing applications.
    Xu X; Zheng D; Lin YS
    J Colloid Interface Sci; 2023 Jul; 642():462-469. PubMed ID: 37023517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidic generator of dynamic shear stress and biochemical signals based on autonomously oscillatory flow.
    Li YJ; Zhang WJ; Zhan CL; Chen KJ; Xue CD; Wang Y; Chen XM; Qin KR
    Electrophoresis; 2021 Nov; 42(21-22):2264-2272. PubMed ID: 34278592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlled Manipulation and Active Sorting of Particles Inside Microfluidic Chips Using Bulk Acoustic Waves and Machine Learning.
    Yiannacou K; Sariola V
    Langmuir; 2021 Apr; 37(14):4192-4199. PubMed ID: 33797244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape Measurement of Ellipsoidal Particles in a Cross-Slot Microchannel Utilizing Viscoelastic Particle Focusing.
    Kim J; Kim JY; Kim Y; Lee SJ; Kim JM
    Anal Chem; 2017 Sep; 89(17):8662-8666. PubMed ID: 28770994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Reconfigurable Microfluidics Platform for Microparticle Separation and Fluid Mixing.
    Hahn YK; Hong D; Kang JH; Choi S
    Micromachines (Basel); 2016 Aug; 7(8):. PubMed ID: 30404310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D printed microfluidic lab-on-a-chip device for fiber-based dual beam optical manipulation.
    Wang H; Enders A; Preuss JA; Bahnemann J; Heisterkamp A; Torres-Mapa ML
    Sci Rep; 2021 Jul; 11(1):14584. PubMed ID: 34272408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Modeling Using Immersed Boundary-Lattice Boltzmann Method and Experiments for Particle Manipulation under Standing Surface Acoustic Waves.
    Alshehhi F; Waheed W; Al-Ali A; Abu-Nada E; Alazzam A
    Micromachines (Basel); 2023 Jan; 14(2):. PubMed ID: 36838066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.
    Lan C; Pal S; Li Z; Ma Y
    Langmuir; 2015 Sep; 31(35):9636-45. PubMed ID: 26241832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Residue-free acoustofluidic manipulation of microparticles via removal of microchannel anechoic corner.
    Khan MS; Sahin MA; Destgeer G; Park J
    Ultrason Sonochem; 2022 Sep; 89():106161. PubMed ID: 36088893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.