These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 37535481)

  • 1. Estimations of Charge Deposition Onto Convoluted Axon Surfaces Within Extracellular Electric Fields.
    Noetscher GM; Tang D; Nummenmaa AR; Bingham CS; McIntyre CC; Makaroff SN
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):307-317. PubMed ID: 37535481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of charges deposited on membranes of human hyperdirect pathway axons on depolarization during subthalamic deep brain stimulation.
    Makaroff SN; Nummenmaa AR; Noetscher GM; Qi Z; McIntyre CC; Bingham CS
    J Neural Eng; 2023 Jul; 20(4):. PubMed ID: 37429285
    [No Abstract]   [Full Text] [Related]  

  • 3. A spectral element method with adaptive segmentation for accurately simulating extracellular electrical stimulation of neurons.
    Eiber CD; Dokos S; Lovell NH; Suaning GJ
    Med Biol Eng Comput; 2017 May; 55(5):823-831. PubMed ID: 27541303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A finite element method framework to model extracellular neural stimulation.
    Fellner A; Heshmat A; Werginz P; Rattay F
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320783
    [No Abstract]   [Full Text] [Related]  

  • 5. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.
    Wang B; Aberra AS; Grill WM; Peterchev AV
    J Neural Eng; 2018 Apr; 15(2):026003. PubMed ID: 29363622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of electric field impact in deep brain stimulation from axon diameter distribution in the human brain.
    Johansson JD
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34619674
    [No Abstract]   [Full Text] [Related]  

  • 7. Thresholds for transverse stimulation: fiber bundles in a uniform field.
    Pourtaheri N; Ying W; Kim JM; Henriquez CS
    IEEE Trans Neural Syst Rehabil Eng; 2009 Oct; 17(5):478-86. PubMed ID: 19887308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Boundary Element Method of Bidomain Modeling for Predicting Cellular Responses to Electromagnetic Fields.
    Czerwonky DM; Aberra AS; Gomez LJ
    bioRxiv; 2023 Dec; ():. PubMed ID: 38168351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between neural activation and electric field distribution during deep brain stimulation.
    Astrom M; Diczfalusy E; Martens H; Wardell K
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):664-672. PubMed ID: 25350910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Resolution Multi-Scale Computational Model for Non-Invasive Cervical Vagus Nerve Stimulation.
    Mourdoukoutas AP; Truong DQ; Adair DK; Simon BJ; Bikson M
    Neuromodulation; 2018 Apr; 21(3):261-268. PubMed ID: 29076212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating the impact of the deep brain stimulation induced electric field on subthalamic neurons: a computational modelling study.
    Yousif N; Purswani N; Bayford R; Nandi D; Bain P; Liu X
    J Neurosci Methods; 2010 Apr; 188(1):105-12. PubMed ID: 20116398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane potential generated by a magnetically induced transverse electric field in a cylindrical axonal model.
    Ye H; Cotic M; Fehlings MG; Carlen PL
    Med Biol Eng Comput; 2011 Jan; 49(1):107-19. PubMed ID: 21063912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive Estimation of the Neural Activation Extent in Computational Volume Conductor Models of Deep Brain Stimulation.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2018 Aug; 65(8):1828-1839. PubMed ID: 29989959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling extracellular electrical stimulation: part 3. Derivation and interpretation of neural tissue equations.
    Meffin H; Tahayori B; Sergeev EN; Mareels IM; Grayden DB; Burkitt AN
    J Neural Eng; 2014 Dec; 11(6):065004. PubMed ID: 25419585
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relation between the electric field and activation of cortical neurons in transcranial electrical stimulation.
    Seo H; Jun SC
    Brain Stimul; 2019; 12(2):275-289. PubMed ID: 30449635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling action potential generation during single and dual electrode stimulation of CA3 axons in hippocampal slice.
    Bellinger SC; Rho JM; Steinmetz PN
    Comput Biol Med; 2010 May; 40(5):487-97. PubMed ID: 20381025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes.
    Makarov SN; Golestanirad L; Wartman WA; Nguyen BT; Noetscher GM; Ahveninen JP; Fujimoto K; Weise K; Nummenmaa AR
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34311449
    [No Abstract]   [Full Text] [Related]  

  • 20. Computational analysis of non-invasive deep brain stimulation based on interfering electric fields.
    Karimi F; Attarpour A; Amirfattahi R; Nezhad AZ
    Phys Med Biol; 2019 Dec; 64(23):235010. PubMed ID: 31661678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.