These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Discovery of Covalent MLKL PROTAC Degraders via Optimization of a Theophylline Derivative Ligand for Treating Necroptosis. Li S; Ma L; Li X; Jiang Y; Luo Z; Yin F; Zhang Y; Chen Y; Wan S; Zhou H; Kong L; Wang X J Med Chem; 2024 Sep; 67(17):15353-15372. PubMed ID: 39180479 [TBL] [Abstract][Full Text] [Related]
3. The Lck inhibitor, AMG-47a, blocks necroptosis and implicates RIPK1 in signalling downstream of MLKL. Jacobsen AV; Pierotti CL; Lowes KN; Au AE; Zhang Y; Etemadi N; Fitzgibbon C; Kersten WJA; Samson AL; van Delft MF; Huang DCS; Sabroux HJ; Lessene G; Silke J; Murphy JM Cell Death Dis; 2022 Apr; 13(4):291. PubMed ID: 35365636 [TBL] [Abstract][Full Text] [Related]
5. Activation of the pseudokinase MLKL unleashes the four-helix bundle domain to induce membrane localization and necroptotic cell death. Hildebrand JM; Tanzer MC; Lucet IS; Young SN; Spall SK; Sharma P; Pierotti C; Garnier JM; Dobson RC; Webb AI; Tripaydonis A; Babon JJ; Mulcair MD; Scanlon MJ; Alexander WS; Wilks AF; Czabotar PE; Lessene G; Murphy JM; Silke J Proc Natl Acad Sci U S A; 2014 Oct; 111(42):15072-7. PubMed ID: 25288762 [TBL] [Abstract][Full Text] [Related]
6. CAMK2/CaMKII activates MLKL in short-term starvation to facilitate autophagic flux. Zhan Q; Jeon J; Li Y; Huang Y; Xiong J; Wang Q; Xu TL; Li Y; Ji FH; Du G; Zhu MX Autophagy; 2022 Apr; 18(4):726-744. PubMed ID: 34282994 [TBL] [Abstract][Full Text] [Related]
7. RIP1, RIP3, and MLKL Contribute to Cell Death Caused by Clostridium perfringens Enterotoxin. Shrestha A; Mehdizadeh Gohari I; McClane BA mBio; 2019 Dec; 10(6):. PubMed ID: 31848291 [No Abstract] [Full Text] [Related]
8. A cytosolic heat shock protein 90 and co-chaperone p23 complex activates RIPK3/MLKL during necroptosis of endothelial cells in acute respiratory distress syndrome. Yu X; Mao M; Liu X; Shen T; Li T; Yu H; Zhang J; Chen X; Zhao X; Zhu D J Mol Med (Berl); 2020 Apr; 98(4):569-583. PubMed ID: 32072232 [TBL] [Abstract][Full Text] [Related]
9. The Many Faces of MLKL, the Executor of Necroptosis. Martinez-Osorio V; Abdelwahab Y; Ros U Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373257 [TBL] [Abstract][Full Text] [Related]
11. Ligustroflavone reduces necroptosis in rat brain after ischemic stroke through targeting RIPK1/RIPK3/MLKL pathway. Zhang YY; Liu WN; Li YQ; Zhang XJ; Yang J; Luo XJ; Peng J Naunyn Schmiedebergs Arch Pharmacol; 2019 Sep; 392(9):1085-1095. PubMed ID: 31055628 [TBL] [Abstract][Full Text] [Related]
12. Key necroptotic proteins are required for Smac mimetic-mediated sensitization of cholangiocarcinoma cells to TNF-α and chemotherapeutic gemcitabine-induced necroptosis. Akara-Amornthum P; Lomphithak T; Choksi S; Tohtong R; Jitkaew S PLoS One; 2020; 15(1):e0227454. PubMed ID: 31914150 [TBL] [Abstract][Full Text] [Related]
13. Resveratrol inhibits necroptosis by mediating the TNF-α/RIP1/RIP3/MLKL pathway in myocardial hypoxia/reoxygenation injury. Hu Y; Pan H; Peng J; He J; Tang M; Yan S; Rong J; Li J; Zheng Z; Wang H; Liu Y; Zhong X Acta Biochim Biophys Sin (Shanghai); 2021 Mar; 53(4):430-437. PubMed ID: 33686403 [TBL] [Abstract][Full Text] [Related]
14. Opposite Effects of Apoptotic and Necroptotic Cellular Pathways on Rotavirus Replication. Soliman M; Seo JY; Baek YB; Park JG; Kang MI; Cho KO; Park SI J Virol; 2022 Jan; 96(1):e0122221. PubMed ID: 34668777 [TBL] [Abstract][Full Text] [Related]
15. Nuclear translocation of MLKL enhances necroptosis by a RIP1/RIP3-independent mechanism in H9c2 cardiomyoblasts. Ino S; Yano T; Kuno A; Tanno M; Kouzu H; Sato T; Yamashita T; Ohwada W; Osanami A; Ogawa T; Toda Y; Shimizu M; Miura T J Pharmacol Sci; 2023 Feb; 151(2):134-143. PubMed ID: 36707179 [TBL] [Abstract][Full Text] [Related]
16. ATP-Competitive MLKL Binders Have No Functional Impact on Necroptosis. Ma B; Marcotte D; Paramasivam M; Michelsen K; Wang T; Bertolotti-Ciarlet A; Jones JH; Moree B; Butko M; Salafsky J; Sun X; McKee T; Silvian LF PLoS One; 2016; 11(11):e0165983. PubMed ID: 27832137 [TBL] [Abstract][Full Text] [Related]
17. Protein-Bound Polysaccharides from Pawlikowska M; Jędrzejewski T; Brożyna AA; Wrotek S Cell Physiol Biochem; 2020 Jun; 54(4):591-604. PubMed ID: 32531147 [TBL] [Abstract][Full Text] [Related]
18. LUBAC-mediated M1 Ub regulates necroptosis by segregating the cellular distribution of active MLKL. Weinelt N; Wächtershäuser KN; Celik G; Jeiler B; Gollin I; Zein L; Smith S; Andrieux G; Das T; Roedig J; Feist L; Rotter B; Boerries M; Pampaloni F; van Wijk SJL Cell Death Dis; 2024 Jan; 15(1):77. PubMed ID: 38245534 [TBL] [Abstract][Full Text] [Related]
19. Identification of MLKL membrane translocation as a checkpoint in necroptotic cell death using Monobodies. Petrie EJ; Birkinshaw RW; Koide A; Denbaum E; Hildebrand JM; Garnish SE; Davies KA; Sandow JJ; Samson AL; Gavin X; Fitzgibbon C; Young SN; Hennessy PJ; Smith PPC; Webb AI; Czabotar PE; Koide S; Murphy JM Proc Natl Acad Sci U S A; 2020 Apr; 117(15):8468-8475. PubMed ID: 32234780 [TBL] [Abstract][Full Text] [Related]
20. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Samson AL; Zhang Y; Geoghegan ND; Gavin XJ; Davies KA; Mlodzianoski MJ; Whitehead LW; Frank D; Garnish SE; Fitzgibbon C; Hempel A; Young SN; Jacobsen AV; Cawthorne W; Petrie EJ; Faux MC; Shield-Artin K; Lalaoui N; Hildebrand JM; Silke J; Rogers KL; Lessene G; Hawkins ED; Murphy JM Nat Commun; 2020 Jun; 11(1):3151. PubMed ID: 32561730 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]