These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 37535980)
1. Deep Potential Molecular Dynamics Study of Chapman-Jouguet Detonation Events of Energetic Materials. Zhang J; Guo W; Yao Y J Phys Chem Lett; 2023 Aug; 14(32):7141-7148. PubMed ID: 37535980 [TBL] [Abstract][Full Text] [Related]
2. Prediction of the Chapman-Jouguet chemical equilibrium state in a detonation wave from first principles based reactive molecular dynamics. Guo D; Zybin SV; An Q; Goddard WA; Huang F Phys Chem Chem Phys; 2016 Jan; 18(3):2015-22. PubMed ID: 26688211 [TBL] [Abstract][Full Text] [Related]
3. Predicted detonation properties at the Chapman-Jouguet state for proposed energetic materials (MTO and MTO3N) from combined ReaxFF and quantum mechanics reactive dynamics. Zhou T; Zybin SV; Goddard WA; Cheng T; Naserifar S; Jaramillo-Botero A; Huang F Phys Chem Chem Phys; 2018 Feb; 20(6):3953-3969. PubMed ID: 29367992 [TBL] [Abstract][Full Text] [Related]
4. Detonation performance and shock sensitivity of energetic material NTO with embedded small molecules: a deep neural network potential accelerated molecular dynamics study. Wang C; Zhang J; Guo W; Liu R; Yao Y Phys Chem Chem Phys; 2024 Oct; 26(39):25543-25556. PubMed ID: 39328184 [TBL] [Abstract][Full Text] [Related]
6. Thermal Stability and Detonation Properties of Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate, an Environmentally Friendly Energetic Three-Dimensional Metal-Organic Framework. Guo D; An Q ACS Appl Mater Interfaces; 2019 Jan; 11(1):1512-1519. PubMed ID: 30525412 [TBL] [Abstract][Full Text] [Related]
7. Molecular simulations of Hugoniots of detonation product mixtures at chemical equilibrium: microscopic calculation of the Chapman-Jouguet state. Bourasseau E; Dubois V; Desbiens N; Maillet JB J Chem Phys; 2007 Aug; 127(8):084513. PubMed ID: 17764275 [TBL] [Abstract][Full Text] [Related]
8. Reaction mechanism and electronic properties of host-guest energetic material CL-20/HA under high pressure by quantum-based molecular dynamics simulations. Xiao Y; Chen L; Yang K; Lu J; Wu J Phys Chem Chem Phys; 2023 Jun; 25(23):15846-15854. PubMed ID: 37255257 [TBL] [Abstract][Full Text] [Related]
9. Calculation of the detonation state of HN Pham CH; Lindsey RK; Fried LE; Goldman N J Chem Phys; 2020 Dec; 153(22):224102. PubMed ID: 33317315 [TBL] [Abstract][Full Text] [Related]
10. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance. Gottfried JL; Bukowski EJ Appl Opt; 2017 Jan; 56(3):B47-B57. PubMed ID: 28157864 [TBL] [Abstract][Full Text] [Related]
11. Influence of interatomic bonding potentials on detonation properties. Heim AJ; Grønbech-Jensen N; Germann TC; Holian BL; Kober EM; Lomdahl PS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026318. PubMed ID: 17930153 [TBL] [Abstract][Full Text] [Related]
12. Increasing Oxygen Balance Leads to Enhanced Performance in Environmentally Acceptable High-Energy Density Materials: Predictions from First-Principles Molecular Dynamics Simulations. Guo D; Zybin SV; Chafin AP; Goddard WA ACS Appl Mater Interfaces; 2022 Feb; 14(4):5257-5264. PubMed ID: 35040628 [TBL] [Abstract][Full Text] [Related]
13. Hydrogen Peroxide Solvates of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane. Bennion JC; Chowdhury N; Kampf JW; Matzger AJ Angew Chem Int Ed Engl; 2016 Oct; 55(42):13118-13121. PubMed ID: 27634673 [TBL] [Abstract][Full Text] [Related]
14. Numerical simulations of large-scale detonation tests in the RUT facility by the LES model. Zbikowski M; Makarov D; Molkov V J Hazard Mater; 2010 Sep; 181(1-3):949-56. PubMed ID: 20541862 [TBL] [Abstract][Full Text] [Related]
15. Jones-Wilkins-Lee Unreacted and Reaction Product Equations of State for Overdriven Detonations in Octogen- and Triaminotrinitrobenzene-Based Plastic-Bonded Explosives. Tarver CM J Phys Chem A; 2020 Feb; 124(7):1399-1408. PubMed ID: 31967469 [TBL] [Abstract][Full Text] [Related]
16. Detonation Performance of Insensitive Nitrogen-Rich Nitroenamine Energetic Materials Predicted from First-Principles Reactive Molecular Dynamics Simulations. Guo D; Wei Y; Zybin SV; Liu Y; Huang F; Goddard WA JACS Au; 2024 Apr; 4(4):1605-1614. PubMed ID: 38665641 [TBL] [Abstract][Full Text] [Related]
18. Application of First-Principles-Based Artificial Neural Network Potentials to Multiscale-Shock Dynamics Simulations on Solid Materials. Misawa M; Fukushima S; Koura A; Shimamura K; Shimojo F; Tiwari S; Nomura KI; Kalia RK; Nakano A; Vashishta P J Phys Chem Lett; 2020 Jun; 11(11):4536-4541. PubMed ID: 32443935 [TBL] [Abstract][Full Text] [Related]
19. Two separate decay timescales of a detonation wave modeled by the Burgers equation and their relation to its chaotic dynamics. Lau-Chapdelaine SS; Radulescu MI Phys Rev E; 2021 Aug; 104(2-2):025103. PubMed ID: 34525556 [TBL] [Abstract][Full Text] [Related]
20. Microscopic simulations of supersonic and subsonic exothermic chemical wave fronts and transition to detonation. Lemarchand A; Nowakowski B; Dumazer G; Antoine C J Chem Phys; 2011 Jan; 134(3):034121. PubMed ID: 21261344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]