These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Identification of cysteines involved in S-nitrosylation, S-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. Aracena-Parks P; Goonasekera SA; Gilman CP; Dirksen RT; Hidalgo C; Hamilton SL J Biol Chem; 2006 Dec; 281(52):40354-68. PubMed ID: 17071618 [TBL] [Abstract][Full Text] [Related]
3. The cysteine-rich protein thimet oligopeptidase as a model of the structural requirements for S-glutathiolation and oxidative oligomerization. Malvezzi A; Higa PM; T-do Amaral A; Silva GM; Gozzo FC; Ferro ES; Castro LM; de Rezende L; Monteiro G; Demasi M PLoS One; 2012; 7(6):e39408. PubMed ID: 22761783 [TBL] [Abstract][Full Text] [Related]
4. Post-translational disulfide modifications in cell signaling--role of inter-protein, intra-protein, S-glutathionyl, and S-cysteaminyl disulfide modifications in signal transmission. O'Brian CA; Chu F Free Radic Res; 2005 May; 39(5):471-80. PubMed ID: 16036322 [TBL] [Abstract][Full Text] [Related]
6. A direct way of redox sensing. Benoit R; Auer M RNA Biol; 2011; 8(1):18-23. PubMed ID: 21220941 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic control of cysteinyl thiol switches in proteins. Deponte M; Lillig CH Biol Chem; 2015 May; 396(5):401-13. PubMed ID: 25581754 [TBL] [Abstract][Full Text] [Related]
8. Measurement and meaning of cellular thiol:disufhide redox status. Comini MA Free Radic Res; 2016; 50(2):246-71. PubMed ID: 26695718 [TBL] [Abstract][Full Text] [Related]
9. Thiol-based redox signalling: rust never sleeps. Wouters MA; Iismaa S; Fan SW; Haworth NL Int J Biochem Cell Biol; 2011 Aug; 43(8):1079-85. PubMed ID: 21513814 [TBL] [Abstract][Full Text] [Related]
10. Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Jacob C; Battaglia E; Burkholz T; Peng D; Bagrel D; Montenarh M Chem Res Toxicol; 2012 Mar; 25(3):588-604. PubMed ID: 22106817 [TBL] [Abstract][Full Text] [Related]
11. Disulfides as redox switches: from molecular mechanisms to functional significance. Wouters MA; Fan SW; Haworth NL Antioxid Redox Signal; 2010 Jan; 12(1):53-91. PubMed ID: 19634988 [TBL] [Abstract][Full Text] [Related]
12. The basics of thiols and cysteines in redox biology and chemistry. Poole LB Free Radic Biol Med; 2015 Mar; 80():148-57. PubMed ID: 25433365 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. Poor CB; Chen PR; Duguid E; Rice PA; He C J Biol Chem; 2009 Aug; 284(35):23517-24. PubMed ID: 19586910 [TBL] [Abstract][Full Text] [Related]
14. A lysine-cysteine redox switch with an NOS bridge regulates enzyme function. Wensien M; von Pappenheim FR; Funk LM; Kloskowski P; Curth U; Diederichsen U; Uranga J; Ye J; Fang P; Pan KT; Urlaub H; Mata RA; Sautner V; Tittmann K Nature; 2021 May; 593(7859):460-464. PubMed ID: 33953398 [TBL] [Abstract][Full Text] [Related]
15. Thiols in cellular redox signalling and control. Moran LK; Gutteridge JM; Quinlan GJ Curr Med Chem; 2001 Jun; 8(7):763-72. PubMed ID: 11375748 [TBL] [Abstract][Full Text] [Related]
16. Proteomic profiling of nitrosative stress: protein S-oxidation accompanies S-nitrosylation. Wang YT; Piyankarage SC; Williams DL; Thatcher GR ACS Chem Biol; 2014 Mar; 9(3):821-30. PubMed ID: 24397869 [TBL] [Abstract][Full Text] [Related]
17. Glutathionylation of beta-actin via a cysteinyl sulfenic acid intermediary. Johansson M; Lundberg M BMC Biochem; 2007 Dec; 8():26. PubMed ID: 18070357 [TBL] [Abstract][Full Text] [Related]
18. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation. Shi Y; Carroll KS Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209 [TBL] [Abstract][Full Text] [Related]