These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37536493)

  • 41. Bone Regeneration in Critical-Sized Bone Defects Treated with Additively Manufactured Porous Metallic Biomaterials: The Effects of Inelastic Mechanical Properties.
    Koolen M; Amin Yavari S; Lietaert K; Wauthle R; Zadpoor AA; Weinans H
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32344664
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes.
    Putra NE; Leeflang MA; Klimopoulou M; Dong J; Taheri P; Huan Z; Fratila-Apachitei LE; Mol JMC; Chang J; Zhou J; Zadpoor AA
    Acta Biomater; 2023 May; 162():182-198. PubMed ID: 36972809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanical properties, in vitro biodegradable behavior, biocompatibility and osteogenic ability of additively manufactured Zn-0.8Li-0.1Mg alloy scaffolds.
    Liu A; Lu Y; Dai J; Wen P; Xia D; Zheng Y
    Biomater Adv; 2023 Oct; 153():213571. PubMed ID: 37562158
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Immunomodulation of surface biofunctionalized 3D printed porous titanium implants.
    Razzi F; Fratila-Apachitei LE; Fahy N; Bastiaansen-Jenniskens YM; Apachitei I; Farrell E; Zadpoor AA
    Biomed Mater; 2020 Apr; 15(3):035017. PubMed ID: 32069447
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Porous magnesium-based scaffolds for tissue engineering.
    Yazdimamaghani M; Razavi M; Vashaee D; Moharamzadeh K; Boccaccini AR; Tayebi L
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1253-1266. PubMed ID: 27987682
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving the fatigue performance of porous metallic biomaterials produced by Selective Laser Melting.
    Van Hooreweder B; Apers Y; Lietaert K; Kruth JP
    Acta Biomater; 2017 Jan; 47():193-202. PubMed ID: 27717912
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques.
    Liu P; Zhang D; Dai Y; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Sep; 114():485-496. PubMed ID: 32738505
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mechanical properties of regular porous biomaterials made from truncated cube repeating unit cells: Analytical solutions and computational models.
    Hedayati R; Sadighi M; Mohammadi-Aghdam M; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():163-183. PubMed ID: 26706520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. How does tissue regeneration influence the mechanical behavior of additively manufactured porous biomaterials?
    Hedayati R; Janbaz S; Sadighi M; Mohammadi-Aghdam M; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jan; 65():831-841. PubMed ID: 27810729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.
    Gossla E; Tonndorf R; Bernhardt A; Kirsten M; Hund RD; Aibibu D; Cherif C; Gelinsky M
    Acta Biomater; 2016 Oct; 44():267-76. PubMed ID: 27544815
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Incorporation of zinc oxide nanoparticles into chitosan-collagen 3D porous scaffolds: Effect on morphology, mechanical properties and cytocompatibility of 3D porous scaffolds.
    Ullah S; Zainol I; Idrus RH
    Int J Biol Macromol; 2017 Nov; 104(Pt A):1020-1029. PubMed ID: 28668615
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Local and systemic inflammation after implantation of a novel iron based porous degradable bone replacement material in sheep model.
    Wegener B; Behnke M; Milz S; Jansson V; Redlich C; Hermanns W; Birkenmaier C; Pieper K; Weißgärber T; Quadbeck P
    Sci Rep; 2021 Jun; 11(1):12035. PubMed ID: 34103567
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In vitro degradation behaviour, cytocompatibility and hemocompatibility of topologically ordered porous iron scaffold prepared using 3D printing and pressureless microwave sintering.
    Sharma P; Jain KG; Pandey PM; Mohanty S
    Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110247. PubMed ID: 31753401
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The enhancement of mechanical properties and uniform degradation of electrodeposited Fe-Zn alloys by multilayered design for biodegradable stent applications.
    Xu Y; Wang W; Yu F; Yang S; Yuan Y; Wang Y
    Acta Biomater; 2023 Apr; 161():309-323. PubMed ID: 36858165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of plasma electrolytic oxidation process on the mechanical properties of additively manufactured porous biomaterials.
    Gorgin Karaji Z; Hedayati R; Pouran B; Apachitei I; Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():406-416. PubMed ID: 28482544
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Extruded Bioreactor Perfusion Culture Supports the Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells in 3D Porous Poly(ɛ-Caprolactone) Scaffolds.
    Silva JC; Moura CS; Borrecho G; de Matos APA; da Silva CL; Cabral JMS; Bártolo PJ; Linhardt RJ; Ferreira FC
    Biotechnol J; 2020 Feb; 15(2):e1900078. PubMed ID: 31560160
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In vitro and 48 weeks in vivo performances of 3D printed porous Fe-30Mn biodegradable scaffolds.
    Nie Y; Chen G; Peng H; Tang S; Zhou Z; Pei F; Shen B
    Acta Biomater; 2021 Feb; 121():724-740. PubMed ID: 33340734
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel method for evaluating the dynamic biocompatibility of degradable biomaterials based on real-time cell analysis.
    Gai X; Liu C; Wang G; Qin Y; Fan C; Liu J; Shi Y
    Regen Biomater; 2020 Jun; 7(3):321-329. PubMed ID: 32523733
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evolution from Bioinert to Bioresorbable: In Vivo Comparative Study of Additively Manufactured Metal Bone Scaffolds.
    Zhou J; Georgas E; Su Y; Zhou J; Kröger N; Benn F; Kopp A; Qin YX; Zhu D
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302702. PubMed ID: 37424385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.