These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37536532)

  • 21. Effect of different rotation systems on mercury methylation in paddy fields.
    Sun T; Ma M; Du H; Wang X; Zhang Y; Wang Y; Wang D
    Ecotoxicol Environ Saf; 2019 Oct; 182():109403. PubMed ID: 31276889
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.
    Zhu H; Zhong H; Wu J
    Chemosphere; 2016 Jun; 152():259-64. PubMed ID: 26974480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selenium-phosphorus modified biochar reduces mercury methylation and bioavailability in agricultural soil.
    Qin D; Luo G; Qin A; He T; Wu P; Yin D
    Environ Pollut; 2024 Mar; 345():123451. PubMed ID: 38281574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.).
    Wang Y; Chen L; Chen Y; Xue Y; Liu G; Zheng X; Zhou L; Zhong H
    Sci Total Environ; 2023 May; 874():162459. PubMed ID: 36871735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling Factors and Predictive Models of Total Mercury and Methylmercury Accumulation in Rice (Oryza sativa L.) from Mercury-Contaminated Paddy Soils.
    Du S; Wang X; Zhou Z; Zhang T; Kamran M; Ding C
    Bull Environ Contam Toxicol; 2023 Jun; 111(1):5. PubMed ID: 37349509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microplastics influence on Hg methylation in diverse paddy soils.
    Yang X; Li Z; Ma C; Yang Z; Wei J; Wang T; Wen X; Chen W; Shi X; Zhang Y; Zhang C
    J Hazard Mater; 2022 Feb; 423(Pt A):126895. PubMed ID: 34454791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of soil mercury concentration and fraction on bioaccumulation process of inorganic mercury and methylmercury in rice (Oryza sativa L.).
    Zhou J; Liu H; Du B; Shang L; Yang J; Wang Y
    Environ Sci Pollut Res Int; 2015 Apr; 22(8):6144-54. PubMed ID: 25398217
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Response of methylmercury in paddy soil and paddy rice to pristine biochar: A meta-analysis and environmental implications.
    Tian X; Chai G; Xie Q; Li G
    Ecotoxicol Environ Saf; 2023 Jun; 257():114933. PubMed ID: 37099962
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The underappreciated role of natural organic matter bond Hg(II) and nanoparticulate HgS as substrates for methylation in paddy soils across a Hg concentration gradient.
    Liu J; Lu B; Poulain AJ; Zhang R; Zhang T; Feng X; Meng B
    Environ Pollut; 2022 Jan; 292(Pt A):118321. PubMed ID: 34634402
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sulfur-driven methylmercury production in paddies continues following soil oxidation.
    Tang W; Tang C; Lei P
    J Environ Sci (China); 2022 Sep; 119():166-174. PubMed ID: 35934461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Organic fertilizer amendment increases methylmercury accumulation in rice plants.
    Li Y; He X; Wang Y; Guan J; Guo J; Xu B; Chen YH; Wang G
    Chemosphere; 2020 Jun; 249():126166. PubMed ID: 32062560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China.
    Yin D; He T; Yin R; Zeng L
    J Environ Sci (China); 2018 Jun; 68():194-205. PubMed ID: 29908739
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioavailability and methylation of bulk mercury sulfide in paddy soils: New insights into mercury risks in rice paddies.
    Li H; Li Y; Tang W; Liu Y; Zheng L; Xu N; Li YF; Xu D; Gao Y; Zhao J
    J Hazard Mater; 2022 Feb; 424(Pt B):127394. PubMed ID: 34628266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.
    Wang X; Ye Z; Li B; Huang L; Meng M; Shi J; Jiang G
    Environ Sci Technol; 2014; 48(3):1878-85. PubMed ID: 24383449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of methyl mercury uptake by rice plants ( Oryza sativa L.) using the diffusive gradient in thin films technique.
    Liu J; Feng X; Qiu G; Anderson CW; Yao H
    Environ Sci Technol; 2012 Oct; 46(20):11013-20. PubMed ID: 22957473
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Geochemical mercury pools regulate diverse communities of hgcA microbes and MeHg levels in paddy soils.
    Liu C; Ning Y; Liu J
    Environ Pollut; 2023 Oct; 334():122172. PubMed ID: 37437760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mercury and Sulfur Redox Cycling Affect Methylmercury Levels in Rice Paddy Soils across a Contamination Gradient.
    Liu J; Chen J; Poulain AJ; Pu Q; Hao Z; Meng B; Feng X
    Environ Sci Technol; 2023 May; 57(21):8149-8160. PubMed ID: 37194595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of peat and thiol-modified peat application on mercury (im)mobilization in mercury-polluted paddy soil.
    Yao C; He T
    Ecotoxicol Environ Saf; 2023 Apr; 254():114743. PubMed ID: 36905846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of fulvic acid and humic acid from different sources on Hg methylation in soil and accumulation in rice.
    Ran S; He T; Zhou X; Yin D
    J Environ Sci (China); 2022 Sep; 119():93-105. PubMed ID: 35934469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.