BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37536842)

  • 1. Definition and evaluation of a finite element model of the human heel for diabetic foot ulcer prevention under shearing loads.
    Trebbi A; Fougeron N; Payan Y
    Med Eng Phys; 2023 Aug; 118():104022. PubMed ID: 37536842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subject-specific material properties of the heel pad: An inverse finite element analysis.
    Isvilanonda V; Li EY; Williams ED; Cavanagh PR; Haynor DR; Chu B; Ledoux WR
    J Biomech; 2024 Mar; 165():112016. PubMed ID: 38422775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fluoroscopic imaging-guided computational analyses to inform internal tissue loads within fat pad of the diabetic foot during gait.
    Zhang X; Teng Z; Geng X; Ma X; Chen WM
    J Biomech; 2023 Aug; 157():111744. PubMed ID: 37535986
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MR-based quantitative measurement of human soft tissue internal strains for pressure ulcer prevention.
    Trebbi A; Mukhina E; Rohan PY; Connesson N; Bailet M; Perrier A; Payan Y
    Med Eng Phys; 2022 Oct; 108():103888. PubMed ID: 36195361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of stiffness in plantar fat tissue in diabetic patients.
    Kwak Y; Kim J; Lee KM; Koo S
    J Biomech; 2020 Jun; 107():109857. PubMed ID: 32517854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D finite element model of the diabetic neuropathic foot: a gait analysis driven approach.
    Guiotto A; Sawacha Z; Guarneri G; Avogaro A; Cobelli C
    J Biomech; 2014 Sep; 47(12):3064-71. PubMed ID: 25113808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the calcaneus shape on the risk of posterior heel ulcer using 3D patient-specific biomechanical modeling.
    Luboz V; Perrier A; Bucki M; Diot B; Cannard F; Vuillerme N; Payan Y
    Ann Biomed Eng; 2015 Feb; 43(2):325-35. PubMed ID: 25384835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computer Modeling Studies to Assess Whether a Prophylactic Dressing Reduces the Risk for Deep Tissue Injury in the Heels of Supine Patients with Diabetes.
    Levy A; Gefen A
    Ostomy Wound Manage; 2016 Apr; 62(4):42-52. PubMed ID: 27065218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element-based method for determining an optimal offloading design for treating and preventing heel ulcers.
    Shaulian H; Gefen A; Solomonow-Avnon D; Wolf A
    Comput Biol Med; 2021 Apr; 131():104261. PubMed ID: 33611128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel graded-stiffness footwear device for heel ulcer prevention and treatment: a finite element-based study.
    Shaulian H; Gefen A; Solomonow-Avnon D; Wolf A
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1703-1712. PubMed ID: 35908097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions.
    Fontanella CG; Nalesso F; Carniel EL; Natali AN
    Med Biol Eng Comput; 2016 Apr; 54(4):653-61. PubMed ID: 26272439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanics of the foot Part 2: A coupled solid-fluid model to investigate blood transport in the pathologic foot.
    Mithraratne K; Ho H; Hunter PJ; Fernandez JW
    Int J Numer Method Biomed Eng; 2012 Oct; 28(10):1071-81. PubMed ID: 23027636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of foot posture, support stiffness, heel pad loading and tissue mechanical properties on biomechanical factors associated with a risk of heel ulceration.
    Sopher R; Nixon J; McGinnis E; Gefen A
    J Mech Behav Biomed Mater; 2011 May; 4(4):572-82. PubMed ID: 21396606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What has finite element analysis taught us about diabetic foot disease and its management? A systematic review.
    Telfer S; Erdemir A; Woodburn J; Cavanagh PR
    PLoS One; 2014; 9(10):e109994. PubMed ID: 25290098
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel insole design for diabetic foot ulcer management.
    Chanda A; Unnikrishnan V
    Proc Inst Mech Eng H; 2018 Dec; 232(12):1182-1195. PubMed ID: 30387688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preliminary study of patient-specific mechanical properties of diabetic and healthy plantar soft tissue from gated magnetic resonance imaging.
    Williams ED; Stebbins MJ; Cavanagh PR; Haynor DR; Chu B; Fassbind MJ; Isvilanonda V; Ledoux WR
    Proc Inst Mech Eng H; 2017 Jul; 231(7):625-633. PubMed ID: 28661227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.