These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 37536842)

  • 21. MR-compatible loading device for assessment of heel pad internal tissue displacements under shearing load.
    Trebbi A; Perrier A; Bailet M; Payan Y
    Med Eng Phys; 2021 Dec; 98():125-132. PubMed ID: 34848031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D printed auxetic heel pads for patients with diabetic mellitus.
    Leung MS; Yick KL; Sun Y; Chow L; Ng SP
    Comput Biol Med; 2022 Jul; 146():105582. PubMed ID: 35588678
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A methodological framework for detecting ulcers' risk in diabetic foot subjects by combining gait analysis, a new musculoskeletal foot model and a foot finite element model.
    Scarton A; Guiotto A; Malaquias T; Spolaor F; Sinigaglia G; Cobelli C; Jonkers I; Sawacha Z
    Gait Posture; 2018 Feb; 60():279-285. PubMed ID: 28965863
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biomechanical modelling of diabetic foot ulcers: A computational study.
    Singh G; Gupta S; Chanda A
    J Biomech; 2021 Oct; 127():110699. PubMed ID: 34425420
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of foot finite element modelling for pressure ulcer prevention in bedrest: Current perspectives and future recommendations.
    Keenan BE; Evans SL; Oomens CWJ
    J Tissue Viability; 2022 Feb; 31(1):73-83. PubMed ID: 34238649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation.
    Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW
    J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A three-dimensional inverse finite element analysis of the heel pad.
    Chokhandre S; Halloran JP; van den Bogert AJ; Erdemir A
    J Biomech Eng; 2012 Mar; 134(3):031002. PubMed ID: 22482682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of pelvic strain in different gait configurations in a validated cohort of computed tomography based finite element models.
    Salo Z; Beek M; Wright D; Maloul A; Whyne CM
    J Biomech; 2017 Nov; 64():120-130. PubMed ID: 29031524
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Associations between changes in loading pattern, deformity, and internal stresses at the foot with hammer toe during walking; a finite element approach.
    Moayedi M; Arshi AR; Salehi M; Akrami M; Naemi R
    Comput Biol Med; 2021 Aug; 135():104598. PubMed ID: 34346320
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot.
    Gefen A
    Med Eng Phys; 2003 Jul; 25(6):491-9. PubMed ID: 12787987
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The in vivo plantar soft tissue mechanical property under the metatarsal head: implications of tissues׳ joint-angle dependent response in foot finite element modeling.
    Chen WM; Lee SJ; Lee PVS
    J Mech Behav Biomed Mater; 2014 Dec; 40():264-274. PubMed ID: 25255421
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis.
    Yarnitzky G; Yizhar Z; Gefen A
    J Biomech; 2006; 39(14):2673-89. PubMed ID: 16212969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifiability of soft tissue constitutive parameters from in-vivo macro-indentation.
    Oddes Z; Solav D
    J Mech Behav Biomed Mater; 2023 Apr; 140():105708. PubMed ID: 36801779
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of foot posture and heel padding devices on soft tissue deformations under the heel in supine position in males: MRI studies.
    Tenenbaum S; Shabshin N; Levy A; Herman A; Gefen A
    J Rehabil Res Dev; 2013; 50(8):1149-56. PubMed ID: 24458901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of the mechanical behaviour of the plantar soft tissue during gait cycle: Experimental and numerical activities.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Proc Inst Mech Eng H; 2015 Oct; 229(10):713-20. PubMed ID: 26405096
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The compressive mechanical properties of diabetic and non-diabetic plantar soft tissue.
    Pai S; Ledoux WR
    J Biomech; 2010 Jun; 43(9):1754-60. PubMed ID: 20207359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.