BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37537179)

  • 1. Segmenting functional tissue units across human organs using community-driven development of generalizable machine learning algorithms.
    Jain Y; Godwin LL; Joshi S; Mandarapu S; Le T; Lindskog C; Lundberg E; Börner K
    Nat Commun; 2023 Aug; 14(1):4656. PubMed ID: 37537179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmenting functional tissue units across human organs using community-driven development of generalizable machine learning algorithms.
    Jain Y; Godwin LL; Joshi S; Mandarapu S; Le T; Lindskog C; Lundberg E; Börner K
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segmentation of human functional tissue units in support of a Human Reference Atlas.
    Jain Y; Godwin LL; Ju Y; Sood N; Quardokus EM; Bueckle A; Longacre T; Horning A; Lin Y; Esplin ED; Hickey JW; Snyder MP; Patterson NH; Spraggins JM; Börner K
    Commun Biol; 2023 Jul; 6(1):717. PubMed ID: 37468557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using deep learning to segment breast and fibroglandular tissue in MRI volumes.
    Dalmış MU; Litjens G; Holland K; Setio A; Mann R; Karssemeijer N; Gubern-Mérida A
    Med Phys; 2017 Feb; 44(2):533-546. PubMed ID: 28035663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of algorithms for synthetic CT generation from MRI: Consequences for MRI-guided radiation planning in the pelvic region.
    Arabi H; Dowling JA; Burgos N; Han X; Greer PB; Koutsouvelis N; Zaidi H
    Med Phys; 2018 Nov; 45(11):5218-5233. PubMed ID: 30216462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches.
    Zhou X
    Adv Exp Med Biol; 2020; 1213():135-147. PubMed ID: 32030668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy.
    Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X
    Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mammogram segmentation using multi-atlas deformable registration.
    Sharma MK; Jas M; Karale V; Sadhu A; Mukhopadhyay S
    Comput Biol Med; 2019 Jul; 110():244-253. PubMed ID: 31233970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CAST: A multi-scale convolutional neural network based automated hippocampal subfield segmentation toolbox.
    Yang Z; Zhuang X; Mishra V; Sreenivasan K; Cordes D
    Neuroimage; 2020 Sep; 218():116947. PubMed ID: 32474081
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Semantic segmentation of cerebrospinal fluid and brain volume with a convolutional neural network in pediatric hydrocephalus-transfer learning from existing algorithms.
    Grimm F; Edl F; Kerscher SR; Nieselt K; Gugel I; Schuhmann MU
    Acta Neurochir (Wien); 2020 Oct; 162(10):2463-2474. PubMed ID: 32583085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfer learning for classification of cardiovascular tissues in histological images.
    Mazo C; Bernal J; Trujillo M; Alegre E
    Comput Methods Programs Biomed; 2018 Oct; 165():69-76. PubMed ID: 30337082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modality-collaborative convolution and transformer hybrid network for unpaired multi-modal medical image segmentation with limited annotations.
    Liu H; Zhuang Y; Song E; Xu X; Ma G; Cetinkaya C; Hung CC
    Med Phys; 2023 Sep; 50(9):5460-5478. PubMed ID: 36864700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated assessment of thigh composition using machine learning for Dixon magnetic resonance images.
    Yang YX; Chong MS; Tay L; Yew S; Yeo A; Tan CH
    MAGMA; 2016 Oct; 29(5):723-31. PubMed ID: 27026244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images.
    William W; Ware A; Basaza-Ejiri AH; Obungoloch J
    Comput Methods Programs Biomed; 2018 Oct; 164():15-22. PubMed ID: 30195423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The first MICCAI challenge on PET tumor segmentation.
    Hatt M; Laurent B; Ouahabi A; Fayad H; Tan S; Li L; Lu W; Jaouen V; Tauber C; Czakon J; Drapejkowski F; Dyrka W; Camarasu-Pop S; Cervenansky F; Girard P; Glatard T; Kain M; Yao Y; Barillot C; Kirov A; Visvikis D
    Med Image Anal; 2018 Feb; 44():177-195. PubMed ID: 29268169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automatic macaque brain segmentation based on 7T MRI.
    Zhao J; Chen W; Liu C; Gao Y; Chen X; Chen G; Xia L; Dai Y; Zhang X
    Magn Reson Imaging; 2022 Oct; 92():232-242. PubMed ID: 35842194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated atlas-based segmentation for skull base surgical planning.
    Konuthula N; Perez FA; Maga AM; Abuzeid WM; Moe K; Hannaford B; Bly RA
    Int J Comput Assist Radiol Surg; 2021 Jun; 16(6):933-941. PubMed ID: 34009539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
    Deng M; Yu R; Wang L; Shi F; Yap PT; Shen D;
    Med Phys; 2016 Dec; 43(12):6588-6597. PubMed ID: 28054724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable Atlas-based Mapped Prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data.
    Kim EY; Magnotta VA; Liu D; Johnson HJ
    Magn Reson Imaging; 2014 Sep; 32(7):832-44. PubMed ID: 24818817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A future of automated image contouring with machine learning in radiation therapy.
    Jackson P; Kron T; Hardcastle N
    J Med Radiat Sci; 2019 Dec; 66(4):223-225. PubMed ID: 31854138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.