These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37537196)
1. Functional annotation of proteins for signaling network inference in non-model species. Van den Broeck L; Bhosale DK; Song K; Fonseca de Lima CF; Ashley M; Zhu T; Zhu S; Van De Cotte B; Neyt P; Ortiz AC; Sikes TR; Aper J; Lootens P; Locke AM; De Smet I; Sozzani R Nat Commun; 2023 Aug; 14(1):4654. PubMed ID: 37537196 [TBL] [Abstract][Full Text] [Related]
2. A Data-Driven Signaling Network Inference Approach for Phosphoproteomics. Madison I; Amin F; Song K; Sozzani R; Van den Broeck L Methods Mol Biol; 2023; 2690():335-354. PubMed ID: 37450158 [TBL] [Abstract][Full Text] [Related]
3. Plant Gene and Alternatively Spliced Variant Annotator. A plant genome annotation pipeline for rice gene and alternatively spliced variant identification with cross-species expressed sequence tag conservation from seven plant species. Chen FC; Wang SS; Chaw SM; Huang YT; Chuang TJ Plant Physiol; 2007 Mar; 143(3):1086-95. PubMed ID: 17220363 [TBL] [Abstract][Full Text] [Related]
4. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. MacGilvray ME; Shishkova E; Chasman D; Place M; Gitter A; Coon JJ; Gasch AP PLoS Comput Biol; 2018 May; 13(5):e1006088. PubMed ID: 29738528 [TBL] [Abstract][Full Text] [Related]
5. A directed protein interaction network for investigating intracellular signal transduction. Vinayagam A; Stelzl U; Foulle R; Plassmann S; Zenkner M; Timm J; Assmus HE; Andrade-Navarro MA; Wanker EE Sci Signal; 2011 Sep; 4(189):rs8. PubMed ID: 21900206 [TBL] [Abstract][Full Text] [Related]
6. Simple and accurate transcriptional start site identification using Smar2C2 and examination of conserved promoter features. Murray A; Mendieta JP; Vollmers C; Schmitz RJ Plant J; 2022 Oct; 112(2):583-596. PubMed ID: 36030508 [TBL] [Abstract][Full Text] [Related]
7. Phosphoproteomic analysis reveals interconnected system-wide responses to perturbations of kinases and phosphatases in yeast. Bodenmiller B; Wanka S; Kraft C; Urban J; Campbell D; Pedrioli PG; Gerrits B; Picotti P; Lam H; Vitek O; Brusniak MY; Roschitzki B; Zhang C; Shokat KM; Schlapbach R; Colman-Lerner A; Nolan GP; Nesvizhskii AI; Peter M; Loewith R; von Mering C; Aebersold R Sci Signal; 2010 Dec; 3(153):rs4. PubMed ID: 21177495 [TBL] [Abstract][Full Text] [Related]
9. Enrichment of Triticum aestivum gene annotations using ortholog cliques and gene ontologies in other plants. Tulpan D; Leger S; Tchagang A; Pan Y BMC Genomics; 2015 Apr; 16(1):299. PubMed ID: 25887590 [TBL] [Abstract][Full Text] [Related]
10. Bayesian analysis of dynamic phosphoproteomic data identifies protein kinases mediating GPCR responses. Leo KT; Chou CL; Yang CR; Park E; Raghuram V; Knepper MA Cell Commun Signal; 2022 Jun; 20(1):80. PubMed ID: 35659261 [TBL] [Abstract][Full Text] [Related]
11. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606 [TBL] [Abstract][Full Text] [Related]
12. Efficient inference for sparse latent variable models of transcriptional regulation. Dai Z; Iqbal M; Lawrence ND; Rattray M Bioinformatics; 2017 Dec; 33(23):3776-3783. PubMed ID: 28961802 [TBL] [Abstract][Full Text] [Related]
13. Inference of the gene regulatory network acting downstream of CROWN ROOTLESSÂ 1 in rice reveals a regulatory cascade linking genes involved in auxin signaling, crown root initiation, and root meristem specification and maintenance. Lavarenne J; Gonin M; Guyomarc'h S; Rouster J; Champion A; Sallaud C; Laplaze L; Gantet P; Lucas M Plant J; 2019 Dec; 100(5):954-968. PubMed ID: 31369175 [TBL] [Abstract][Full Text] [Related]
14. Both Intrinsic Substrate Preference and Network Context Contribute to Substrate Selection of Classical Tyrosine Phosphatases. Palma A; Tinti M; Paoluzi S; Santonico E; Brandt BW; Hooft van Huijsduijnen R; Masch A; Heringa J; Schutkowski M; Castagnoli L; Cesareni G J Biol Chem; 2017 Mar; 292(12):4942-4952. PubMed ID: 28159843 [TBL] [Abstract][Full Text] [Related]
15. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Ye J; Zhang Z; Long H; Zhang Z; Hong Y; Zhang X; You C; Liang W; Ma H; Lu P Plant J; 2015 Nov; 84(3):527-44. PubMed ID: 26360816 [TBL] [Abstract][Full Text] [Related]
16. Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. Zhang Y; Kweon HK; Shively C; Kumar A; Andrews PC PLoS Comput Biol; 2013; 9(6):e1003077. PubMed ID: 23825934 [TBL] [Abstract][Full Text] [Related]
17. Network inference using informative priors. Mukherjee S; Speed TP Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14313-8. PubMed ID: 18799736 [TBL] [Abstract][Full Text] [Related]
18. An empirical Bayesian approach for model-based inference of cellular signaling networks. Klinke DJ BMC Bioinformatics; 2009 Nov; 10():371. PubMed ID: 19900289 [TBL] [Abstract][Full Text] [Related]
19. Reverse engineering module networks by PSO-RNN hybrid modeling. Zhang Y; Xuan J; de los Reyes BG; Clarke R; Ressom HW BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S15. PubMed ID: 19594874 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. Belamkar V; Weeks NT; Bharti AK; Farmer AD; Graham MA; Cannon SB BMC Genomics; 2014 Nov; 15():950. PubMed ID: 25362847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]