These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37537362)

  • 1. A pilot radiometabolomics integration study for the characterization of renal oncocytic neoplasia.
    Klontzas ME; Koltsakis E; Kalarakis G; Trpkov K; Papathomas T; Sun N; Walch A; Karantanas AH; Tzortzakakis A
    Sci Rep; 2023 Aug; 13(1):12594. PubMed ID: 37537362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Integrating
    Klontzas ME; Koltsakis E; Kalarakis G; Trpkov K; Papathomas T; Karantanas AH; Tzortzakakis A
    Cancers (Basel); 2023 Jul; 15(14):. PubMed ID: 37509214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A CT-based radiomics model for predicting renal capsule invasion in renal cell carcinoma.
    Yang L; Gao L; Arefan D; Tan Y; Dan H; Zhang J
    BMC Med Imaging; 2022 Jan; 22(1):15. PubMed ID: 35094674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies.
    Zhou T; Guan J; Feng B; Xue H; Cui J; Kuang Q; Chen Y; Xu K; Lin F; Cui E; Long W
    Eur Radiol; 2023 Jun; 33(6):4323-4332. PubMed ID: 36645455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of benign from malignant solid renal lesions using CT-based radiomics and machine learning: comparison with radiologist interpretation.
    Wentland AL; Yamashita R; Kino A; Pandit P; Shen L; Brooke Jeffrey R; Rubin D; Kamaya A
    Abdom Radiol (NY); 2023 Feb; 48(2):642-648. PubMed ID: 36370180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT-based radiomics analysis of different machine learning models for differentiating benign and malignant parotid tumors.
    Zheng Y; Zhou D; Liu H; Wen M
    Eur Radiol; 2022 Oct; 32(10):6953-6964. PubMed ID: 35484339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discriminating malignant and benign clinical T1 renal masses on computed tomography: A pragmatic radiomics and machine learning approach.
    Uhlig J; Biggemann L; Nietert MM; Beißbarth T; Lotz J; Kim HS; Trojan L; Uhlig A
    Medicine (Baltimore); 2020 Apr; 99(16):e19725. PubMed ID: 32311963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat.
    Yang R; Wu J; Sun L; Lai S; Xu Y; Liu X; Ma Y; Zhen X
    Eur Radiol; 2020 Feb; 30(2):1254-1263. PubMed ID: 31468159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aorta-Lesion-Attenuation-Difference (ALAD) on contrast-enhanced CT: a potential imaging biomarker for differentiating malignant from benign oncocytic neoplasms.
    Dhyani M; Grajo JR; Rodriguez D; Chen Z; Feldman A; Tambouret R; Gervais DA; Arellano RS; Hahn PF; Samir AE
    Abdom Radiol (NY); 2017 Jun; 42(6):1734-1743. PubMed ID: 28197683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral CT imaging versus conventional CT post-processing technique in differentiating malignant and benign renal tumors.
    Zhu Q; Sun J; Zhu W; Chen W; Ye J
    Br J Radiol; 2023 Nov; 96(1151):20230147. PubMed ID: 37750940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of radiomics machine-learning classifiers and feature selection for differentiation of sacral chordoma and sacral giant cell tumour based on 3D computed tomography features.
    Yin P; Mao N; Zhao C; Wu J; Sun C; Chen L; Hong N
    Eur Radiol; 2019 Apr; 29(4):1841-1847. PubMed ID: 30280245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiating Benign From Malignant Cystic Renal Masses: A Feasibility Study of Computed Tomography Texture-Based Machine Learning Algorithms.
    Miskin N; Qin L; Silverman SG; Shinagare AB
    J Comput Assist Tomogr; 2023 May-Jun 01; 47(3):376-381. PubMed ID: 37184999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma.
    Demirjian NL; Varghese BA; Cen SY; Hwang DH; Aron M; Siddiqui I; Fields BKK; Lei X; Yap FY; Rivas M; Reddy SS; Zahoor H; Liu DH; Desai M; Rhie SK; Gill IS; Duddalwar V
    Eur Radiol; 2022 Apr; 32(4):2552-2563. PubMed ID: 34757449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma.
    Lin F; Cui EM; Lei Y; Luo LP
    Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma.
    Feng Z; Rong P; Cao P; Zhou Q; Zhu W; Yan Z; Liu Q; Wang W
    Eur Radiol; 2018 Apr; 28(4):1625-1633. PubMed ID: 29134348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiomics models based on enhanced computed tomography to distinguish clear cell from non-clear cell renal cell carcinomas.
    Wang P; Pei X; Yin XP; Ren JL; Wang Y; Ma LY; Du XG; Gao BL
    Sci Rep; 2021 Jul; 11(1):13729. PubMed ID: 34215760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT.
    Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS
    Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pretreatment differentiation of renal cell carcinoma subtypes by CT: the influence of different tumor enhancement measurement approaches.
    Zokalj I; Marotti M; Kolarić B
    Int Urol Nephrol; 2014 Jun; 46(6):1089-100. PubMed ID: 24381132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiogenomics in Clear Cell Renal Cell Carcinoma: Machine Learning-Based High-Dimensional Quantitative CT Texture Analysis in Predicting PBRM1 Mutation Status.
    Kocak B; Durmaz ES; Ates E; Ulusan MB
    AJR Am J Roentgenol; 2019 Mar; 212(3):W55-W63. PubMed ID: 30601030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.