These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37537362)

  • 21.
    Tzortzakakis A; Papathomas T; Gustafsson O; Gabrielson S; Trpkov K; Ekström-Ehn L; Arvanitis A; Holstensson M; Karlsson M; Kokaraki G; Axelsson R
    Scand J Urol; 2022; 56(5-6):375-382. PubMed ID: 36065481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of Clear Cell and Non-clear-cell Renal Cell Carcinoma through CT-based Radiomics Models and Nomogram.
    Cheng D; Abudikeranmu Y; Tuerdi B
    Curr Med Imaging; 2023; 19(9):1005-1017. PubMed ID: 36411581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiomics allows for detection of benign and malignant histopathology in patients with metastatic testicular germ cell tumors prior to post-chemotherapy retroperitoneal lymph node dissection.
    Baessler B; Nestler T; Pinto Dos Santos D; Paffenholz P; Zeuch V; Pfister D; Maintz D; Heidenreich A
    Eur Radiol; 2020 Apr; 30(4):2334-2345. PubMed ID: 31828413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A pilot investigation of a urinary metabolic biomarker discovery in renal cell carcinoma.
    Zhang M; Liu X; Liu X; Li H; Sun W; Zhang Y
    Int Urol Nephrol; 2020 Mar; 52(3):437-446. PubMed ID: 31732842
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
    Zabihollahy F; Schieda N; Krishna S; Ukwatta E
    Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sporadic oncocytic tumors with features intermediate between oncocytoma and chromophobe renal cell carcinoma: comprehensive clinicopathological and genomic profiling.
    Liu YJ; Ussakli C; Antic T; Liu Y; Wu Y; True L; Tretiakova MS
    Hum Pathol; 2020 Oct; 104():18-29. PubMed ID: 32673684
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Shape and texture-based radiomics signature on CT effectively discriminates benign from malignant renal masses.
    Yap FY; Varghese BA; Cen SY; Hwang DH; Lei X; Desai B; Lau C; Yang LL; Fullenkamp AJ; Hajian S; Rivas M; Gupta MN; Quinn BD; Aron M; Desai MM; Aron M; Oberai AA; Gill IS; Duddalwar VA
    Eur Radiol; 2021 Feb; 31(2):1011-1021. PubMed ID: 32803417
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CT-based radiomics for differentiating renal tumours: a systematic review.
    Bhandari A; Ibrahim M; Sharma C; Liong R; Gustafson S; Prior M
    Abdom Radiol (NY); 2021 May; 46(5):2052-2063. PubMed ID: 33136182
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning.
    Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H
    Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Validation of aorta-lesion-attenuation difference on preoperative contrast-enhanced computed tomography scan to differentiate between malignant and benign oncocytic renal tumors.
    Grajo JR; Batra NV; Bozorgmehri S; Magnelli LL; Pavlinec J; O'Malley P; Su LM; Crispen PL
    Abdom Radiol (NY); 2021 Jul; 46(7):3269-3279. PubMed ID: 33665734
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FDG PET/CT radiomics as a tool to differentiate between reactive axillary lymphadenopathy following COVID-19 vaccination and metastatic breast cancer axillary lymphadenopathy: a pilot study.
    Eifer M; Pinian H; Klang E; Alhoubani Y; Kanana N; Tau N; Davidson T; Konen E; Catalano OA; Eshet Y; Domachevsky L
    Eur Radiol; 2022 Sep; 32(9):5921-5929. PubMed ID: 35385985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade.
    Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H
    Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Benign and Malignant Solid Renal Masses: Machine Learning-Based CT Texture Analysis.
    Erdim C; Yardimci AH; Bektas CT; Kocak B; Koca SB; Demir H; Kilickesmez O
    Acad Radiol; 2020 Oct; 27(10):1422-1429. PubMed ID: 32014404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors.
    von Schacky CE; Wilhelm NJ; Schäfer VS; Leonhardt Y; Jung M; Jungmann PM; Russe MF; Foreman SC; Gassert FG; Gassert FT; Schwaiger BJ; Mogler C; Knebel C; von Eisenhart-Rothe R; Makowski MR; Woertler K; Burgkart R; Gersing AS
    Eur Radiol; 2022 Sep; 32(9):6247-6257. PubMed ID: 35396665
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.
    Gu Q; Feng Z; Liang Q; Li M; Deng J; Ma M; Wang W; Liu J; Liu P; Rong P
    Eur J Radiol; 2019 Sep; 118():32-37. PubMed ID: 31439255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Texture analysis as a radiomic marker for differentiating renal tumors.
    Yu H; Scalera J; Khalid M; Touret AS; Bloch N; Li B; Qureshi MM; Soto JA; Anderson SW
    Abdom Radiol (NY); 2017 Oct; 42(10):2470-2478. PubMed ID: 28421244
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preoperative contrast-enhanced CT-based radiomics nomogram for differentiating benign and malignant primary retroperitoneal tumors.
    Xu J; Guo J; Yang HQ; Ji QL; Song RJ; Hou F; Liang HY; Liu SL; Tian LT; Wang HX
    Eur Radiol; 2023 Oct; 33(10):6781-6793. PubMed ID: 37148350
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Aorta-Lesion-Attenuation Difference on Preoperative Contrast-enhanced Computed Tomography Scan to Differentiate Between Malignant and Benign Renal Tumors.
    Grajo JR; Terry RS; Ruoss J; Noennig BJ; Pavlinec JG; Bozorgmehri S; Crispen PL; Su LM
    Urology; 2019 Mar; 125():123-130. PubMed ID: 30552939
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Can Quantitative CT Texture Analysis be Used to Differentiate Fat-poor Renal Angiomyolipoma from Renal Cell Carcinoma on Unenhanced CT Images?
    Hodgdon T; McInnes MD; Schieda N; Flood TA; Lamb L; Thornhill RE
    Radiology; 2015 Sep; 276(3):787-96. PubMed ID: 25906183
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.