These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37537411)

  • 1. Spatial spread of infectious diseases with conditional vector preferences.
    Hamelin FM; Hilker FM; Dumont Y
    J Math Biol; 2023 Aug; 87(2):38. PubMed ID: 37537411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conditional vector preference aids the spread of plant pathogens: results from a model.
    Roosien BK; Gomulkiewicz R; Ingwell LL; Bosque-Pérez NA; Rajabaskar D; Eigenbrode SD
    Environ Entomol; 2013 Dec; 42(6):1299-308. PubMed ID: 24246613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vector Preference Annihilates Backward Bifurcation and Reduces Endemicity.
    Caja Rivera R; Barradas I
    Bull Math Biol; 2019 Nov; 81(11):4447-4469. PubMed ID: 30569327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vector-borne disease models with Lagrangian approach.
    Gao D; Cao L
    J Math Biol; 2024 Jan; 88(2):22. PubMed ID: 38294559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hybrid Lagrangian-Eulerian model for vector-borne diseases.
    Gao D; Yuan X
    J Math Biol; 2024 Jun; 89(2):16. PubMed ID: 38890206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation between host competence and vector-feeding preference in a multi-host model: Chagas and Cutaneous Leishmaniasis.
    Rivera RC; Bilal S; Michael E
    Math Biosci Eng; 2020 Aug; 17(5):5561-5583. PubMed ID: 33120566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bifurcation analysis in models for vector-borne diseases with logistic growth.
    Li G; Jin Z
    ScientificWorldJournal; 2014; 2014():195864. PubMed ID: 24790552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vector population growth and condition-dependent movement drive the spread of plant pathogens.
    Shaw AK; Peace A; Power AG; Bosque-Pérez NA
    Ecology; 2017 Aug; 98(8):2145-2157. PubMed ID: 28555726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic analysis of a vector-borne disease model with the age of infection.
    Wang X; Chen Y; Martcheva M; Rong L
    J Biol Dyn; 2020 Dec; 14(1):332-367. PubMed ID: 32324106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epidemiological and ecological consequences of virus manipulation of host and vector in plant virus transmission.
    Cunniffe NJ; Taylor NP; Hamelin FM; Jeger MJ
    PLoS Comput Biol; 2021 Dec; 17(12):e1009759. PubMed ID: 34968387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathogens manipulate the preference of vectors, slowing disease spread in a multi-host system.
    Shoemaker LG; Hayhurst E; Weiss-Lehman CP; Strauss AT; Porath-Krause A; Borer ET; Seabloom EW; Shaw AK
    Ecol Lett; 2019 Jul; 22(7):1115-1125. PubMed ID: 31090159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
    Gulbudak H; Cannataro VL; Tuncer N; Martcheva M
    Bull Math Biol; 2017 Feb; 79(2):325-355. PubMed ID: 28032207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competent Hosts and Endemicity of Multi-Host Vector-Borne Diseases.
    Sanabria Malagón C; Vargas Bernal E
    Bull Math Biol; 2019 Nov; 81(11):4470-4483. PubMed ID: 30535844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of vector-borne disease epidemics.
    Hosack GR; Rossignol PA; van den Driessche P
    J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of complexity and seasonality on backward bifurcation in vector-host models.
    Bilal S; Michael E
    R Soc Open Sci; 2018 Feb; 5(2):171971. PubMed ID: 29515896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans.
    Amaku M; Burattini MN; Coutinho FA; Lopez LF; Massad E
    Comput Math Methods Med; 2013; 2013():659038. PubMed ID: 24454539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transmission parameters of vector-borne infections.
    Desenclos JC
    Med Mal Infect; 2011 Nov; 41(11):588-93. PubMed ID: 21993137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.