These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 37537536)
1. Boosting variant-calling performance with multi-platform sequencing data using Clair3-MP. Yu H; Zheng Z; Su J; Lam TW; Luo R BMC Bioinformatics; 2023 Aug; 24(1):308. PubMed ID: 37537536 [TBL] [Abstract][Full Text] [Related]
2. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data. Hall MB; Wick RR; Judd LM; Nguyen AN; Steinig EJ; Xie O; Davies M; Seemann T; Stinear TP; Coin L Elife; 2024 Oct; 13():. PubMed ID: 39388235 [TBL] [Abstract][Full Text] [Related]
3. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks. Su J; Zheng Z; Ahmed SS; Lam TW; Luo R Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849103 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of the Available Variant Calling Tools for Oxford Nanopore Sequencing in Breast Cancer. Helal AA; Saad BT; Saad MT; Mosaad GS; Aboshanab KM Genes (Basel); 2022 Sep; 13(9):. PubMed ID: 36140751 [TBL] [Abstract][Full Text] [Related]
5. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Pei Y; Tanguy M; Giess A; Dixit A; Wilson LC; Gibbons RJ; Twigg SRF; Elgar G; Wilkie AOM Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062704 [TBL] [Abstract][Full Text] [Related]
6. Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery. Barbitoff YA; Abasov R; Tvorogova VE; Glotov AS; Predeus AV BMC Genomics; 2022 Feb; 23(1):155. PubMed ID: 35193511 [TBL] [Abstract][Full Text] [Related]
7. Closing the gap: Oxford Nanopore Technologies R10 sequencing allows comparable results to Illumina sequencing for SNP-based outbreak investigation of bacterial pathogens. Bogaerts B; Van den Bossche A; Verhaegen B; Delbrassinne L; Mattheus W; Nouws S; Godfroid M; Hoffman S; Roosens NHC; De Keersmaecker SCJ; Vanneste K J Clin Microbiol; 2024 May; 62(5):e0157623. PubMed ID: 38441926 [TBL] [Abstract][Full Text] [Related]
8. HELLO: improved neural network architectures and methodologies for small variant calling. Ramachandran A; Lumetta SS; Klee EW; Chen D BMC Bioinformatics; 2021 Aug; 22(1):404. PubMed ID: 34391391 [TBL] [Abstract][Full Text] [Related]
9. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers. Chen J; Li X; Zhong H; Meng Y; Du H Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349 [TBL] [Abstract][Full Text] [Related]
10. ADS-HCSpark: A scalable HaplotypeCaller leveraging adaptive data segmentation to accelerate variant calling on Spark. Xiao A; Wu Z; Dong S BMC Bioinformatics; 2019 Feb; 20(1):76. PubMed ID: 30764760 [TBL] [Abstract][Full Text] [Related]
11. Duet: SNP-assisted structural variant calling and phasing using Oxford nanopore sequencing. Zhou Y; Leung AW; Ahmed SS; Lam TW; Luo R BMC Bioinformatics; 2022 Nov; 23(1):465. PubMed ID: 36344913 [TBL] [Abstract][Full Text] [Related]
12. ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell. Leung AW; Leung HC; Wong CL; Zheng ZX; Lui WW; Luk HM; Lo IF; Luo R; Lam TW BMC Med Genomics; 2022 Mar; 15(1):43. PubMed ID: 35246132 [TBL] [Abstract][Full Text] [Related]
13. NanoSNP: a progressive and haplotype-aware SNP caller on low-coverage nanopore sequencing data. Huang N; Xu M; Nie F; Ni P; Xiao CL; Luo F; Wang J Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36548365 [TBL] [Abstract][Full Text] [Related]
14. Performance analysis of conventional and AI-based variant callers using short and long reads. Abdelwahab O; Belzile F; Torkamaneh D BMC Bioinformatics; 2023 Dec; 24(1):472. PubMed ID: 38097928 [TBL] [Abstract][Full Text] [Related]
15. Local read haplotagging enables accurate long-read small variant calling. Kolesnikov A; Cook D; Nattestad M; Brambrink L; McNulty B; Gorzynski J; Goenka S; Ashley EA; Jain M; Miga KH; Paten B; Chang PC; Carroll A; Shafin K Nat Commun; 2024 Jul; 15(1):5907. PubMed ID: 39003259 [TBL] [Abstract][Full Text] [Related]
16. Local read haplotagging enables accurate long-read small variant calling. Kolesnikov A; Cook D; Nattestad M; McNulty B; Gorzynski J; Goenka S; Ashley EA; Jain M; Miga KH; Paten B; Chang PC; Carroll A; Shafin K bioRxiv; 2023 Sep; ():. PubMed ID: 37745389 [TBL] [Abstract][Full Text] [Related]
17. Benchmarking the empirical accuracy of short-read sequencing across the M. tuberculosis genome. Marin M; Vargas R; Harris M; Jeffrey B; Epperson LE; Durbin D; Strong M; Salfinger M; Iqbal Z; Akhundova I; Vashakidze S; Crudu V; Rosenthal A; Farhat MR Bioinformatics; 2022 Mar; 38(7):1781-1787. PubMed ID: 35020793 [TBL] [Abstract][Full Text] [Related]
19. Coverage bias and sensitivity of variant calling for four whole-genome sequencing technologies. Rieber N; Zapatka M; Lasitschka B; Jones D; Northcott P; Hutter B; Jäger N; Kool M; Taylor M; Lichter P; Pfister S; Wolf S; Brors B; Eils R PLoS One; 2013; 8(6):e66621. PubMed ID: 23776689 [TBL] [Abstract][Full Text] [Related]
20. Accuracy and reproducibility of somatic point mutation calling in clinical-type targeted sequencing data. Karimnezhad A; Palidwor GA; Thavorn K; Stewart DJ; Campbell PA; Lo B; Perkins TJ BMC Med Genomics; 2020 Oct; 13(1):156. PubMed ID: 33059707 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]