These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 3753757)

  • 1. Adsorption of natural lung surfactant and phospholipid extracts related to tubular myelin formation.
    Notter RH; Penney DP; Finkelstein JN; Shapiro DL
    Pediatr Res; 1986 Jan; 20(1):97-101. PubMed ID: 3753757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface property changes from interactions of albumin with natural lung surfactant and extracted lung lipids.
    Holm BA; Notter RH; Finkelstein JN
    Chem Phys Lipids; 1985 Sep; 38(3):287-98. PubMed ID: 3841303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative adsorption of natural lung surfactant, extracted phospholipids, and artificial phospholipid mixtures to the air-water interface.
    Notter RH; Finkelstein JN; Taubold RD
    Chem Phys Lipids; 1983 Jul; 33(1):67-80. PubMed ID: 6688762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung surfactant replacement in premature lambs with extracted lipids from bovine lung lavage: effects of dose, dispersion technique, and gestational age.
    Notter RH; Egan EA; Kwong MS; Holm BA; Shapiro DL
    Pediatr Res; 1985 Jun; 19(6):569-77. PubMed ID: 3839302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concentration-dependent, temperature-dependent non-Newtonian viscosity of lung surfactant dispersions.
    King DM; Wang Z; Kendig JW; Palmer HJ; Holm BA; Notter RH
    Chem Phys Lipids; 2001 Jul; 112(1):11-9. PubMed ID: 11518568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and structure of surface films: captive bubble surfactometry.
    Schürch S; Green FH; Bachofen H
    Biochim Biophys Acta; 1998 Nov; 1408(2-3):180-202. PubMed ID: 9813315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissolution and reassembly of tubular myelin-like multilamellated structures from the lungs of patients with pulmonary alveolar proteinosis.
    Hook GE; Gilmore LB; Talley FA
    Lab Invest; 1986 Aug; 55(2):194-208. PubMed ID: 3755483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption, compression and stability of surface films from natural, lipid extract and reconstituted pulmonary surfactants.
    Yu SH; Possmayer F
    Biochim Biophys Acta; 1993 Apr; 1167(3):264-71. PubMed ID: 8481387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant protein A accumulating in the alveoli of patients with pulmonary alveolar proteinosis: oligomeric structure and interaction with lipids.
    Hattori A; Kuroki Y; Katoh T; Takahashi H; Shen HQ; Suzuki Y; Akino T
    Am J Respir Cell Mol Biol; 1996 Jun; 14(6):608-19. PubMed ID: 8652189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of hemoglobin and cell membrane lipids on pulmonary surfactant activity.
    Holm BA; Notter RH
    J Appl Physiol (1985); 1987 Oct; 63(4):1434-42. PubMed ID: 3693177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasonic and jet aerosolization of phospholipids and the effects on surface activity.
    Marks LB; Notter RH; Oberdorster G; McBride JT
    Pediatr Res; 1983 Sep; 17(9):742-7. PubMed ID: 6622110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Path dependence of adsorption behavior of mixtures containing dipalmitoyl phosphatidylcholine.
    Notter RH; Smith S; Taubold RD; Finkelstein JN
    Pediatr Res; 1982 Jul; 16(7):515-9. PubMed ID: 6896747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biophysical activity of synthetic phospholipids combined with purified lung surfactant 6000 dalton apoprotein.
    Notter RH; Shapiro DL; Ohning B; Whitsett JA
    Chem Phys Lipids; 1987 Jun; 44(1):1-17. PubMed ID: 3607971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structures of pulmonary surfactant films adsorbed to an air-liquid interface in vitro.
    Bachofen H; Gerber U; Gehr P; Amrein M; Schürch S
    Biochim Biophys Acta; 2005 Dec; 1720(1-2):59-72. PubMed ID: 16405864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a surfactant-associated protein and calcium ions on the structure and surface activity of lung surfactant lipids.
    Hawgood S; Benson BJ; Hamilton RL
    Biochemistry; 1985 Jan; 24(1):184-90. PubMed ID: 3922400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of pulmonary surfactant protein SP-A to monolayers of phospholipids containing hydrophobic surfactant protein SP-B or SP-C: potential differential role for tertiary interaction of lipids, hydrophobic proteins, and SP-A.
    Taneva SG; Keough KM
    Biochemistry; 2000 May; 39(20):6083-93. PubMed ID: 10821681
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New protocols for preparing dipalmitoylphosphatidylcholine dispersions and controlling surface tension and competitive adsorption with albumin at the air/aqueous interface.
    Kim SH; Franses EI
    Colloids Surf B Biointerfaces; 2005 Jul; 43(3-4):256-66. PubMed ID: 15979858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures.
    Yu SH; Possmayer F
    Biochim Biophys Acta; 1990 Oct; 1046(3):233-41. PubMed ID: 2223863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlated atomic force and transmission electron microscopy of nanotubular structures in pulmonary surfactant.
    Nag K; Munro JG; Hearn SA; Rasmusson J; Petersen NO; Possmayer F
    J Struct Biol; 1999 Jun; 126(1):1-15. PubMed ID: 10329484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.