These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37538758)

  • 1. A theoretical study of CO adsorption on Cu(211) surface with coverage effects.
    Özbek MO
    Turk J Chem; 2022; 46(4):1199-1209. PubMed ID: 37538758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DFT and TPD study of the role of steps in the adsorption of CO on copper: Cu(4 1 0) versus Cu(1 0 0).
    Kokalj A; Makino T; Okada M
    J Phys Condens Matter; 2017 May; 29(19):194001. PubMed ID: 28291017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage.
    Orita H; Inada Y
    J Phys Chem B; 2005 Dec; 109(47):22469-75. PubMed ID: 16853927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies of CO adsorption on Pt(100), Pt(410), and Pt(110) surfaces using density functional theory.
    Yamagishi S; Fujimoto T; Inada Y; Orita H
    J Phys Chem B; 2005 May; 109(18):8899-908. PubMed ID: 16852058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfur Atoms Adsorbed on Cu(100) at Low Coverage: Characterization and Stability against Complexation.
    Walen H; Liu DJ; Oh J; Yang HJ; Spurgeon PM; Kim Y; Thiel PA
    J Phys Chem B; 2018 Jan; 122(2):963-971. PubMed ID: 28829614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical insights into the effect of terrace width and step edge coverage on CO adsorption and dissociation over stepped Ni surfaces.
    Yang K; Zhang M; Yu Y
    Phys Chem Chem Phys; 2017 Jul; 19(27):17918-17927. PubMed ID: 28664969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.
    Amino S; Arguelles E; Agerico Diño W; Okada M; Kasai H
    Phys Chem Chem Phys; 2016 Aug; 18(34):23621-7. PubMed ID: 27506302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical insight into chlorine adsorption on the Fe(100) surface.
    Altarawneh M; Saraireh SA
    Phys Chem Chem Phys; 2014 May; 16(18):8575-81. PubMed ID: 24671648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. First-principles investigation of methanethiol adsorption and dissociation mechanisms on the high-Miller-index vicinal surface Cu(4 1 0).
    Raouafi F; Seydou M; Lassoued K; Taleb A; Diawara B
    J Phys Condens Matter; 2016 May; 28(17):175001. PubMed ID: 27028163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen and sulfur adsorption on vicinal surfaces of copper and silver: Preferred adsorption sites.
    Liu DJ; Thiel PA
    J Chem Phys; 2018 Mar; 148(12):124706. PubMed ID: 29604855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of NO adsorption on Pt(110)-(1 x 2) and (1 x 1) surfaces using density functional theory.
    Orita H; Nakamura I; Fujitani T
    J Phys Chem B; 2005 May; 109(20):10312-8. PubMed ID: 16852249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational coupling as a probe of adsorption at different structural sites on a stepped single-crystal electrode.
    Kim CS; Korzeniewski C
    Anal Chem; 1997 Jul; 69(13):2349-53. PubMed ID: 21639367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction between silver nanowires and CO on a stepped platinum surface.
    Streber R; Tränkenschuh B; Schöck J; Papp C; Steinrück HP; McEwen JS; Gaspard P; Denecke R
    J Chem Phys; 2009 Aug; 131(6):064702. PubMed ID: 19691398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A DFT study of the adsorption and dissociation of CO on Fe(100): influence of surface coverage on the nature of accessible adsorption states.
    Bromfield TC; Ferré DC; Niemantsverdriet JW
    Chemphyschem; 2005 Feb; 6(2):254-60. PubMed ID: 15751347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption, vibration, and diffusion of O atoms on Rh low-index and (711) stepped defective surfaces.
    Diao ZY; Hao C; Wang ZX; Dong CC; Pang XH
    J Phys Chem B; 2005 Jun; 109(25):12467-73. PubMed ID: 16852541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into both coverage and surface structure dependent CO adsorption and activation on different Ni surfaces from DFT and atomistic thermodynamics.
    Hao X; Wang B; Wang Q; Zhang R; Li D
    Phys Chem Chem Phys; 2016 Jun; 18(26):17606-18. PubMed ID: 27306737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large entropy difference between terrace and step sites on surfaces.
    Starr DE; Campbell CT
    J Am Chem Soc; 2008 Jun; 130(23):7321-7. PubMed ID: 18479084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen adsorption on MoS
    Kronberg R; Hakala M; Holmberg N; Laasonen K
    Phys Chem Chem Phys; 2017 Jun; 19(24):16231-16241. PubMed ID: 28607979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coverage-dependent adsorption of atomic sulfur on Fe(110): a DFT study.
    Spencer MJ; Snook IK; Yarovsky I
    J Phys Chem B; 2005 May; 109(19):9604-12. PubMed ID: 16852156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles descriptors of CO chemisorption on Ni and Cu surfaces.
    Gameel KM; Sharafeldin IM; Allam NK
    Phys Chem Chem Phys; 2019 Jun; 21(21):11476-11487. PubMed ID: 31112167
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.