These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 37538816)

  • 1. A generalized protein-ligand scoring framework with balanced scoring, docking, ranking and screening powers.
    Shen C; Zhang X; Hsieh CY; Deng Y; Wang D; Xu L; Wu J; Li D; Kang Y; Hou T; Pan P
    Chem Sci; 2023 Aug; 14(30):8129-8146. PubMed ID: 37538816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Protein-Ligand Binding Pose Prediction and Virtual Screening Based on Residue-Atom Distance Likelihood Potential and Graph Transformer.
    Shen C; Zhang X; Deng Y; Gao J; Wang D; Xu L; Pan P; Hou T; Kang Y
    J Med Chem; 2022 Aug; 65(15):10691-10706. PubMed ID: 35917397
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iterative Knowledge-Based Scoring Function for Protein-Ligand Interactions by Considering Binding Affinity Information.
    Zhao X; Li H; Zhang K; Huang SY
    J Phys Chem B; 2023 Oct; 127(42):9021-9034. PubMed ID: 37822259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving docking results via reranking of ensembles of ligand poses in multiple X-ray protein conformations with MM-GBSA.
    Greenidge PA; Kramer C; Mozziconacci JC; Sherman W
    J Chem Inf Model; 2014 Oct; 54(10):2697-717. PubMed ID: 25266271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delta Machine Learning to Improve Scoring-Ranking-Screening Performances of Protein-Ligand Scoring Functions.
    Yang C; Zhang Y
    J Chem Inf Model; 2022 Jun; 62(11):2696-2712. PubMed ID: 35579568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A D3R prospective evaluation of machine learning for protein-ligand scoring.
    Sunseri J; Ragoza M; Collins J; Koes DR
    J Comput Aided Mol Des; 2016 Sep; 30(9):761-771. PubMed ID: 27592011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving scoring-docking-screening powers of protein-ligand scoring functions using random forest.
    Wang C; Zhang Y
    J Comput Chem; 2017 Jan; 38(3):169-177. PubMed ID: 27859414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative assessment of ranking accuracies of conventional and machine-learning-based scoring functions for protein-ligand binding affinity prediction.
    Ashtawy HM; Mahapatra NR
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(5):1301-13. PubMed ID: 22411892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear scoring functions for similarity-based ligand docking and binding affinity prediction.
    Brylinski M
    J Chem Inf Model; 2013 Nov; 53(11):3097-112. PubMed ID: 24171431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning protein-ligand binding affinity with atomic environment vectors.
    Meli R; Anighoro A; Bodkin MJ; Morris GM; Biggin PC
    J Cheminform; 2021 Aug; 13(1):59. PubMed ID: 34391475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges.
    Guedes IA; Pereira FSS; Dardenne LE
    Front Pharmacol; 2018; 9():1089. PubMed ID: 30319422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ET-score: Improving Protein-ligand Binding Affinity Prediction Based on Distance-weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm.
    Rayka M; Karimi-Jafari MH; Firouzi R
    Mol Inform; 2021 Aug; 40(8):e2060084. PubMed ID: 34021703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine learning on ligand-residue interaction profiles to significantly improve binding affinity prediction.
    Ji B; He X; Zhai J; Zhang Y; Man VH; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33758923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative assessment of scoring functions on an updated benchmark: 2. Evaluation methods and general results.
    Li Y; Han L; Liu Z; Wang R
    J Chem Inf Model; 2014 Jun; 54(6):1717-36. PubMed ID: 24708446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.