These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 375394)

  • 41. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): an introduction of occupational health hazards.
    Oliveira ML; Marostega F; Taffarel SR; Saikia BK; Waanders FB; DaBoit K; Baruah BP; Silva LF
    Sci Total Environ; 2014 Jan; 468-469():1128-37. PubMed ID: 24121564
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dimethyl and monomethyl sulfate: presence in coal fly ash and airborne particulate matter.
    Lee ML; Later DW; Rollins DK; Eatough DJ; Hansen LD
    Science; 1980 Jan; 207(4427):186-8. PubMed ID: 7350652
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete.
    Siriruang C; Toochinda P; Julnipitawong P; Tangtermsirikul S
    J Environ Manage; 2016 Apr; 170():70-8. PubMed ID: 26803257
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomedically relevant chemical and physical properties of coal combustion products.
    Fisher GL
    Environ Health Perspect; 1983 Jan; 47():189-99. PubMed ID: 6337824
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Radioactivity of size fractionated fly-ash emissions from a peat- and oil-fired power plant.
    Mustonen R; Jantunen M
    Health Phys; 1985 Dec; 49(6):1251-60. PubMed ID: 4077527
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monitoring airborne fly ash by the membrane filter counting procedure.
    Presswood WG; Huyser J; Whitaker CG
    Am Ind Hyg Assoc J; 1980 Jan; 41(1):33-9. PubMed ID: 7355720
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Study on emission of hazardous trace elements in a 350 MW coal-fired power plant. Part 2. arsenic, chromium, barium, manganese, lead.
    Zhao S; Duan Y; Chen L; Li Y; Yao T; Liu S; Liu M; Lu J
    Environ Pollut; 2017 Jul; 226():404-411. PubMed ID: 28416223
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Distributions and environmental impacts of selenium in wastes of coal from a power plant].
    Xu WD; Zeng RS; Ye DN; Quero X
    Huan Jing Ke Xue; 2005 Mar; 26(2):64-8. PubMed ID: 16004301
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Escaping radioactivity from coal-fired power plants (CPPs) due to coal burning and the associated hazards: a review.
    Papastefanou C
    J Environ Radioact; 2010 Mar; 101(3):191-200. PubMed ID: 20005612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [The mutagenic activity of coal tar].
    Lycheva TA; Khitrovo IA; Kosoĭ GKh; Khesina AIa; Belitskiĭ GA
    Eksp Onkol; 1990; 12(2):17-20. PubMed ID: 2180675
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mutagenic activity of particulate organic matter collected with a dilution sampler at coal-fired power plants.
    Sousa JA; Houck JE; Cooper JA; Daisey JM
    JAPCA; 1987 Dec; 37(12):1439-44. PubMed ID: 3443871
    [No Abstract]   [Full Text] [Related]  

  • 52. Assessment of PAH toxicity and mutagenicity in emissions from coal and biofuel combustion.
    Rajput N; Pyari AA; Saini MK; Kumari KM; Lakhani A
    J Environ Sci Eng; 2010 Jul; 52(3):185-92. PubMed ID: 21391389
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cellular Mutagenicity and Heavy Metal Concentrations of Leachates Extracted from the Fly and Bottom Ash Derived from Municipal Solid Waste Incineration.
    Chen PW; Liu ZS; Wun MJ; Kuo TC
    Int J Environ Res Public Health; 2016 Nov; 13(11):. PubMed ID: 27827867
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of fired construction brick from high sulfate-containing fly ash with boric acid addition.
    Başpinar MS; Kahraman E; Görhan G; Demir I
    Waste Manag Res; 2010 Jan; 28(1):4-10. PubMed ID: 19423597
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Elemental mercury oxidation in an electrostatic precipitator enhanced with in situ soft X-ray irradiation.
    Jing H; Wang X; Wang WN; Biswas P
    J Air Waste Manag Assoc; 2015 Apr; 65(4):455-65. PubMed ID: 25947215
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Distribution and Fate of Mercury in Pulverized Bituminous Coal-Fired Power Plants in Coal Energy-Dominant Huainan City, China.
    Chen B; Liu G; Sun R
    Arch Environ Contam Toxicol; 2016 May; 70(4):724-33. PubMed ID: 26883032
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Combustion and NOx emission characteristics with respect to staged-air damper opening in a 600 MWe down-fired pulverized-coal furnace under deep-air-staging conditions.
    Kuang M; Li Z; Wang Z; Jing X; Liu C; Zhu Q; Ling Z
    Environ Sci Technol; 2014; 48(1):837-44. PubMed ID: 24274316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Natural radionuclide emission from coal-fired power plants in the southwestern of Turkey and the population exposure to external radiation in their vicinity.
    Gür F; Yaprak G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Dec; 45(14):1900-8. PubMed ID: 20981605
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [The mutagenic activity of suspended particles in the atmosphere in the industrial cities of Ukraine].
    Dugan AI; Bariliak IR
    Tsitol Genet; 1995; 29(5):28-34. PubMed ID: 8721842
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of coal blending in electrostatic precipitation efficiency-Inner Mongolia, China.
    Qi L; Xu J; Yao Y; Zhang Y
    Environ Sci Pollut Res Int; 2018 Nov; 25(31):31421-31426. PubMed ID: 30196465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.