BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37539835)

  • 1. HEAP: a task adaptive-based explainable deep learning framework for enhancer activity prediction.
    Liu Y; Wang Z; Yuan H; Zhu G; Zhang Y
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37539835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning and interpreting the gene regulatory grammar in a deep learning framework.
    Chen L; Capra JA
    PLoS Comput Biol; 2020 Nov; 16(11):e1008334. PubMed ID: 33137083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers.
    Zhang Y; Zhang P; Wu H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38485768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new method for enhancer prediction based on deep belief network.
    Bu H; Gan Y; Wang Y; Zhou S; Guan J
    BMC Bioinformatics; 2017 Oct; 18(Suppl 12):418. PubMed ID: 29072144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative machine learning framework for the identification of cell-specific enhancers from the human genome.
    Basith S; Hasan MM; Lee G; Wei L; Manavalan B
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34226917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.
    Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV
    BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.
    Lu Y; Qu W; Shan G; Zhang C
    PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SENIES: DNA Shape Enhanced Two-Layer Deep Learning Predictor for the Identification of Enhancers and Their Strength.
    Li Y; Kong F; Cui H; Wang F; Li C; Ma J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):637-645. PubMed ID: 35015646
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays.
    Chen Z; Zhang J; Liu J; Dai Y; Lee D; Min MR; Xu M; Gerstein M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i280-i288. PubMed ID: 34252960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information.
    Wu H; Liu M; Zhang P; Zhang H
    Brief Funct Genomics; 2023 May; 22(3):302-311. PubMed ID: 36715222
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide identification and characterization of DNA enhancers with a stacked multivariate fusion framework.
    Wang Y; Hou Z; Yang Y; Wong KC; Li X
    PLoS Comput Biol; 2022 Dec; 18(12):e1010779. PubMed ID: 36520922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFA: An explainable deep learning model for annotating the transcriptional roles of cis-regulatory modules based on epigenetic codes.
    Yang TH; Yu YH; Wu SH; Zhang FY
    Comput Biol Med; 2023 Jan; 152():106375. PubMed ID: 36502693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-species analysis of enhancer logic using deep learning.
    Minnoye L; Taskiran II; Mauduit D; Fazio M; Van Aerschot L; Hulselmans G; Christiaens V; Makhzami S; Seltenhammer M; Karras P; Primot A; Cadieu E; van Rooijen E; Marine JC; Egidy G; Ghanem GE; Zon L; Wouters J; Aerts S
    Genome Res; 2020 Dec; 30(12):1815-1834. PubMed ID: 32732264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of Enhancers in DNA Sequence Data using a Hybrid CNN-DLSTM Model.
    Kaur A; Chauhan APS; Aggarwal AK
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(2):1327-1336. PubMed ID: 35417351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength.
    Yang R; Wu F; Zhang C; Zhang L
    Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PorcineAI-Enhancer: Prediction of Pig Enhancer Sequences Using Convolutional Neural Networks.
    Wang J; Zhang H; Chen N; Zeng T; Ai X; Wu K
    Animals (Basel); 2023 Sep; 13(18):. PubMed ID: 37760334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RicENN: Prediction of Rice Enhancers with Neural Network Based on DNA Sequences.
    Gao Y; Chen Y; Feng H; Zhang Y; Yue Z
    Interdiscip Sci; 2022 Jun; 14(2):555-565. PubMed ID: 35190950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
    Yang B; Liu F; Ren C; Ouyang Z; Xie Z; Bo X; Shu W
    Bioinformatics; 2017 Jul; 33(13):1930-1936. PubMed ID: 28334114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DEEP: a general computational framework for predicting enhancers.
    Kleftogiannis D; Kalnis P; Bajic VB
    Nucleic Acids Res; 2015 Jan; 43(1):e6. PubMed ID: 25378307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.