BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37539863)

  • 1. Gradients of glucose metabolism regulate morphogen signalling required for specifying tonotopic organisation in the chicken cochlea.
    O'Sullivan JDB; Blacker TS; Scott C; Chang W; Ahmed M; Yianni V; Mann ZF
    Elife; 2023 Aug; 12():. PubMed ID: 37539863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gradient of Bmp7 specifies the tonotopic axis in the developing inner ear.
    Mann ZF; Thiede BR; Chang W; Shin JB; May-Simera HL; Lovett M; Corwin JT; Kelley MW
    Nat Commun; 2014 May; 5():3839. PubMed ID: 24845721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved role of Sonic Hedgehog in tonotopic organization of the avian basilar papilla and mammalian cochlea.
    Son EJ; Ma JH; Ankamreddy H; Shin JO; Choi JY; Wu DK; Bok J
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):3746-51. PubMed ID: 25775517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression gradients along the tonotopic axis of the chicken auditory epithelium.
    Frucht CS; Uduman M; Kleinstein SH; Santos-Sacchi J; Navaratnam DS
    J Assoc Res Otolaryngol; 2011 Aug; 12(4):423-35. PubMed ID: 21399991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Ovo and Ex Ovo Methods to Study Avian Inner Ear Development.
    Singh N; Prakash A; Chakravarthy SR; Kaushik R; Ladher RK
    J Vis Exp; 2022 Jun; (184):. PubMed ID: 35786636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tonotopic map of potassium currents in chick auditory hair cells using an intact basilar papilla.
    Pantelias AA; Monsivais P; Rubel EW
    Hear Res; 2001 Jun; 156(1-2):81-94. PubMed ID: 11377884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wnt9a Can Influence Cell Fates and Neural Connectivity across the Radial Axis of the Developing Cochlea.
    Munnamalai V; Sienknecht UJ; Duncan RK; Scott MK; Thawani A; Fantetti KN; Atallah NM; Biesemeier DJ; Song KH; Luethy K; Traub E; Fekete DM
    J Neurosci; 2017 Sep; 37(37):8975-8988. PubMed ID: 28821654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hair cell force generation does not amplify or tune vibrations within the chicken basilar papilla.
    Xia A; Liu X; Raphael PD; Applegate BE; Oghalai JS
    Nat Commun; 2016 Oct; 7():13133. PubMed ID: 27796310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of tonotopy in the auditory periphery.
    Mann ZF; Kelley MW
    Hear Res; 2011 Jun; 276(1-2):2-15. PubMed ID: 21276841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration.
    Walters BJ; Zuo J
    Hear Res; 2013 Mar; 297():68-83. PubMed ID: 23164734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D reconstruction of the mouse cochlea from scRNA-seq data suggests morphogen-based principles in apex-to-base specification.
    Wang S; Chakraborty S; Fu Y; Lee MP; Liu J; Waldhaus J
    Dev Cell; 2024 Jun; 59(12):1538-1552.e6. PubMed ID: 38593801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental gene expression profiling along the tonotopic axis of the mouse cochlea.
    Son EJ; Wu L; Yoon H; Kim S; Choi JY; Bok J
    PLoS One; 2012; 7(7):e40735. PubMed ID: 22808246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA; Falzarano PR
    J Comp Neurol; 1994 Feb; 340(1):87-97. PubMed ID: 8176004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fgf signaling regulates development and transdifferentiation of hair cells and supporting cells in the basilar papilla.
    Jacques BE; Dabdoub A; Kelley MW
    Hear Res; 2012 Jul; 289(1-2):27-39. PubMed ID: 22575790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-Catenin is required for radial cell patterning and identity in the developing mouse cochlea.
    Jansson L; Ebeid M; Shen JW; Mokhtari TE; Quiruz LA; Ornitz DM; Huh SH; Cheng AG
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):21054-21060. PubMed ID: 31570588
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cochlear Surface Preparation in the Adult Mouse.
    Fang QJ; Wu F; Chai R; Sha SH
    J Vis Exp; 2019 Nov; (153):. PubMed ID: 31762458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear tonotopy from proteins to perception.
    Fettiplace R
    Bioessays; 2023 Aug; 45(8):e2300058. PubMed ID: 37329318
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A micromechanical contribution to cochlear tuning and tonotopic organization.
    Holton T; Hudspeth AJ
    Science; 1983 Nov; 222(4623):508-10. PubMed ID: 6623089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line.
    Jacques BE; Montgomery WH; Uribe PM; Yatteau A; Asuncion JD; Resendiz G; Matsui JI; Dabdoub A
    Dev Neurobiol; 2014 Apr; 74(4):438-56. PubMed ID: 24115534
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The tonotopic map in the embryonic chicken cochlea.
    Jones SM; Jones TA
    Hear Res; 1995 Feb; 82(2):149-57. PubMed ID: 7775281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.