These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37540186)

  • 21. H-NS regulates OmpF expression through micF antisense RNA in Escherichia coli.
    Suzuki T; Ueguchi C; Mizuno T
    J Bacteriol; 1996 Jun; 178(12):3650-3. PubMed ID: 8655567
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional response of OmpC and OmpF in Escherichia coli against differential gradient of carbapenem stress.
    Chetri S; Singha M; Bhowmik D; Nath K; Chanda DD; Chakravarty A; Bhattacharjee A
    BMC Res Notes; 2019 Mar; 12(1):138. PubMed ID: 30871640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Validation of Suitable Carrier Molecules and Target Genes for Antisense Therapy Using Peptide-Coupled Peptide Nucleic Acids (PNAs) in Streptococci.
    Barkowsky G; Kreikemeyer B; Patenge N
    Methods Mol Biol; 2020; 2136():339-345. PubMed ID: 32430835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The leucine-responsive regulatory protein of Escherichia coli negatively regulates transcription of ompC and micF and positively regulates translation of ompF.
    Ferrario M; Ernsting BR; Borst DW; Wiese DE; Blumenthal RM; Matthews RG
    J Bacteriol; 1995 Jan; 177(1):103-13. PubMed ID: 8002608
    [TBL] [Abstract][Full Text] [Related]  

  • 25. micF antisense RNA has a major role in osmoregulation of OmpF in Escherichia coli.
    Ramani N; Hedeshian M; Freundlich M
    J Bacteriol; 1994 Aug; 176(16):5005-10. PubMed ID: 7519595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome-based design of antisense inhibitors potentiates carbapenem efficacy in CRE
    Aunins TR; Erickson KE; Chatterjee A
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30699-30709. PubMed ID: 33199638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comprehensive analysis of PNA-based antisense antibiotics targeting various essential genes in uropathogenic Escherichia coli.
    Popella L; Jung J; Do PT; Hayward RJ; Barquist L; Vogel J
    Nucleic Acids Res; 2022 Jun; 50(11):6435-6452. PubMed ID: 35687096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Peptide nucleic acids (PNAs) antisense effect to bacterial growth and their application potentiality in biotechnology.
    Hatamoto M; Ohashi A; Imachi H
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):397-402. PubMed ID: 20135118
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Design and off-target prediction for antisense oligomers targeting bacterial mRNAs with the MASON web server.
    Jung J; Popella L; Do PT; Pfau P; Vogel J; Barquist L
    RNA; 2023 May; 29(5):570-583. PubMed ID: 36750372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Riboregulation in bacteria: From general principles to novel mechanisms of the trp attenuator and its sRNA and peptide products.
    Evguenieva-Hackenberg E
    Wiley Interdiscip Rev RNA; 2022 May; 13(3):e1696. PubMed ID: 34651439
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Natural antisense RNA/target RNA interactions: possible models for antisense oligonucleotide drug design.
    Delihas N; Rokita SE; Zheng P
    Nat Biotechnol; 1997 Aug; 15(8):751-3. PubMed ID: 9255788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. sRNA roles in regulating transcriptional regulators: Lrp and SoxS regulation by sRNAs.
    Lee HJ; Gottesman S
    Nucleic Acids Res; 2016 Aug; 44(14):6907-23. PubMed ID: 27137887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An Investigation into the Potential of Targeting
    Goddard LR; Mardle CE; Gneid H; Ball CG; Gowers DM; Atkins HS; Butt LE; Watts JK; Vincent HA; Callaghan AJ
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Networks of Resistance: Small RNA Control of Antibiotic Resistance.
    Mediati DG; Wu S; Wu W; Tree JJ
    Trends Genet; 2021 Jan; 37(1):35-45. PubMed ID: 32951948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Annotation and evolutionary relationships of a small regulatory RNA gene micF and its target ompF in Yersinia species.
    Delihas N
    BMC Microbiol; 2003 Jun; 3():13. PubMed ID: 12834539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Delivery of cell-penetrating peptide-peptide nucleic acid conjugates by assembly on an oligonucleotide scaffold.
    Zhao XL; Chen BC; Han JC; Wei L; Pan XB
    Sci Rep; 2015 Nov; 5():17640. PubMed ID: 26612536
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Disarmed anthrax toxin delivers antisense oligonucleotides and siRNA with high efficiency and low toxicity.
    Dyer PDR; Shepherd TR; Gollings AS; Shorter SA; Gorringe-Pattrick MAM; Tang CK; Cattoz BN; Baillie L; Griffiths PC; Richardson SCW
    J Control Release; 2015 Dec; 220(Pt A):316-328. PubMed ID: 26546271
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antisense properties of duplex- and triplex-forming PNAs.
    Knudsen H; Nielsen PE
    Nucleic Acids Res; 1996 Feb; 24(3):494-500. PubMed ID: 8602363
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile accelerated specific therapeutic (FAST) platform develops antisense therapies to counter multidrug-resistant bacteria.
    Eller KA; Aunins TR; Courtney CM; Campos JK; Otoupal PB; Erickson KE; Madinger NE; Chatterjee A
    Commun Biol; 2021 Mar; 4(1):331. PubMed ID: 33712689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.