BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 37540313)

  • 21. NF-κB-Induced R-Loops and Genomic Instability in HTLV-1-Infected and Adult T-Cell Leukemia Cells.
    Giam CZ; Pasupala N
    Viruses; 2022 Apr; 14(5):. PubMed ID: 35632619
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability.
    Khristich AN; Mirkin SM
    J Biol Chem; 2020 Mar; 295(13):4134-4170. PubMed ID: 32060097
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RAP80 suppresses the vulnerability of R-loops during DNA double-strand break repair.
    Yasuhara T; Kato R; Yamauchi M; Uchihara Y; Zou L; Miyagawa K; Shibata A
    Cell Rep; 2022 Feb; 38(5):110335. PubMed ID: 35108530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repeat-associated non-AUG translation and its impact in neurodegenerative disease.
    Kearse MG; Todd PK
    Neurotherapeutics; 2014 Oct; 11(4):721-31. PubMed ID: 25005000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Untangling the crosstalk between BRCA1 and R-loops during DNA repair.
    San Martin Alonso M; Noordermeer SM
    Nucleic Acids Res; 2021 May; 49(9):4848-4863. PubMed ID: 33755171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae.
    Sundararajan R; Gellon L; Zunder RM; Freudenreich CH
    Genetics; 2010 Jan; 184(1):65-77. PubMed ID: 19901069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-strand annealing between inverted DNA repeats: Pathway choice, participating proteins, and genome destabilizing consequences.
    Ramakrishnan S; Kockler Z; Evans R; Downing BD; Malkova A
    PLoS Genet; 2018 Aug; 14(8):e1007543. PubMed ID: 30091972
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection pressure on human STR loci and its relevance in repeat expansion disease.
    Shimada MK; Sanbonmatsu R; Yamaguchi-Kabata Y; Yamasaki C; Suzuki Y; Chakraborty R; Gojobori T; Imanishi T
    Mol Genet Genomics; 2016 Oct; 291(5):1851-69. PubMed ID: 27290643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. R-loops as Janus-faced modulators of DNA repair.
    Marnef A; Legube G
    Nat Cell Biol; 2021 Apr; 23(4):305-313. PubMed ID: 33837288
    [TBL] [Abstract][Full Text] [Related]  

  • 30. R-Loops in Motor Neuron Diseases.
    Perego MGL; Taiana M; Bresolin N; Comi GP; Corti S
    Mol Neurobiol; 2019 Apr; 56(4):2579-2589. PubMed ID: 30047099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. R-Loops in Genome Instability and Cancer.
    Li F; Zafar A; Luo L; Denning AM; Gu J; Bennett A; Yuan F; Zhang Y
    Cancers (Basel); 2023 Oct; 15(20):. PubMed ID: 37894353
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide sequencing as a first-tier screening test for short tandem repeat expansions.
    Rajan-Babu IS; Peng JJ; Chiu R; ; ; Li C; Mohajeri A; Dolzhenko E; Eberle MA; Birol I; Friedman JM
    Genome Med; 2021 Aug; 13(1):126. PubMed ID: 34372915
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
    Mosbach V; Viterbo D; Descorps-Declère S; Poggi L; Vaysse-Zinkhöfer W; Richard GF
    PLoS Genet; 2020 Jul; 16(7):e1008924. PubMed ID: 32673314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. R loops: new modulators of genome dynamics and function.
    Santos-Pereira JM; Aguilera A
    Nat Rev Genet; 2015 Oct; 16(10):583-97. PubMed ID: 26370899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability.
    Reddy K; Schmidt MH; Geist JM; Thakkar NP; Panigrahi GB; Wang YH; Pearson CE
    Nucleic Acids Res; 2014; 42(16):10473-87. PubMed ID: 25147206
    [TBL] [Abstract][Full Text] [Related]  

  • 36. R-loop structure: the formation and the effects on genomic stability.
    Pan X; Jiang N; Chen X; Zhou X; Ding L; Duan F
    Yi Chuan; 2014 Dec; 36(12):1185-94. PubMed ID: 25487262
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The G-rich Repeats in
    Abu Diab M; Mor-Shaked H; Cohen E; Cohen-Hadad Y; Ram O; Epsztejn-Litman S; Eiges R
    Genetics; 2018 Dec; 210(4):1239-1252. PubMed ID: 30396881
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Emerging Role of DNA Damage in the Pathogenesis of the C9orf72 Repeat Expansion in Amyotrophic Lateral Sclerosis.
    Konopka A; Atkin JD
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30322030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting Pathogenic DNA and RNA Repeats: A Conceptual Therapeutic Way for Repeat Expansion Diseases.
    Guo P; Han D
    Chemistry; 2022 Sep; 28(54):e202201749. PubMed ID: 35727679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transcription-associated R-loop formation across the human FMR1 CGG-repeat region.
    Loomis EW; Sanz LA; Chédin F; Hagerman PJ
    PLoS Genet; 2014 Apr; 10(4):e1004294. PubMed ID: 24743386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.