These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37540421)

  • 1. Investigation of dissolved organic matter's influence on the toxicity of cadmium to the cyanobacterium Microcystis aeruginosa by biochemical and molecular assays.
    Ta M; Wei J; Ye S; Zhang J; Song T; Li M
    Environ Sci Pollut Res Int; 2023 Sep; 30(41):94790-94802. PubMed ID: 37540421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological characteristics and toxin production of Microcystis aeruginosa (Cyanobacterium) in response to DOM in anaerobic digestion effluent.
    Lin Y; Chen A; Peng L; Luo S; Zeng Q; Shao J
    Sci Total Environ; 2019 Oct; 685():902-910. PubMed ID: 31247437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The characterization of dissolved organic matter extracted from different sources and their influence on cadmium uptake by Microcystis aeruginosa.
    Ni L; Su L; Li S; Wang P; Li D; Ye X; Li Y; Li Y; Li Y; Wang C
    Environ Toxicol Chem; 2017 Jul; 36(7):1856-1863. PubMed ID: 28042892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cadmium toxicity to Microcystis aeruginosa PCC 7806 and its microcystin-lacking mutant.
    Huang B; Xu S; Miao AJ; Xiao L; Yang LY
    PLoS One; 2015; 10(1):e0116659. PubMed ID: 25590420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of cadmium and Microcystis aeruginosa (cyanobacterium) on the growth, antioxidative responses and accumulation of cadmium and microcystins in rice seedlings.
    Kuang X; Gu JD; Tie B; Yao B; Shao J
    Ecotoxicology; 2016 Oct; 25(8):1588-1599. PubMed ID: 27604787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of dissolved organic matter from sediment and soil samples on the growth and physiology of four bloom-forming algal species.
    Xiang R; Zheng B; Jia H
    Ecotoxicol Environ Saf; 2023 Sep; 263():115266. PubMed ID: 37467560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the influence of light intensity in mcyA gene expression and microcystin production in toxic strains of Planktothrix agardhii and Microcystis aeruginosa.
    Salvador D; Churro C; Valério E
    J Microbiol Methods; 2016 Apr; 123():4-12. PubMed ID: 26851673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Salt-alkalization may potentially promote Microcystis aeruginosa blooms and the production of microcystin-LR.
    Yu J; Zhu H; Shutes B; Wang X
    Environ Pollut; 2022 May; 301():118971. PubMed ID: 35167928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sensitivity of multiple ecotoxicological assays for evaluating Microcystis aeruginosa cellular algal organic matter and contribution of cyanotoxins to the toxicity.
    Šrédlová K; Šilhavecká S; Linhartová L; Semerád J; Michalíková K; Pivokonský M; Cajthaml T
    Toxicon; 2021 May; 195():69-77. PubMed ID: 33711366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of lanthanum on Microcystis aeruginosa: Attention to the changes in composition and content of cellular microcystins.
    Shen F; Wang L; Zhou Q; Huang X
    Aquat Toxicol; 2018 Mar; 196():9-16. PubMed ID: 29324395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of clarithromycin exposure on the growth of Microcystis aeruginosa and the production of algal dissolved organic matter.
    Zhang CM; Zhou Q; Li YQ; Li J
    Aquat Toxicol; 2024 Jun; 271():106918. PubMed ID: 38598945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity.
    Yu J; Zhu H; Wang H; Shutes B; Niu T
    J Hazard Mater; 2023 May; 449():131042. PubMed ID: 36827725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of dissolved organic matter derived from two herbs on the growth, physiology, and physico-chemical characteristics of four bloom-forming algae species.
    Xiang R; Liu T; Chu Z; Wang X; Zheng B; Jia H
    J Environ Manage; 2023 Jun; 336():117559. PubMed ID: 36868155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Responses of the toxic cyanobacterium Microcystis aeruginosa to iron and humic substances.
    Kosakowska A; Nedzi M; Pempkowiak J
    Plant Physiol Biochem; 2007 May; 45(5):365-70. PubMed ID: 17509890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of Cu
    Gao X; Feng W; Zhang J; Zhang H; Huo S
    Environ Pollut; 2023 Oct; 334():122186. PubMed ID: 37442327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Zinc on
    Perez JL; Chu T
    Toxins (Basel); 2020 Jan; 12(2):. PubMed ID: 32019107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of dissolved organic matter from different sources on Microcystis aeruginosa growth and physiological characteristics.
    Zhao M; Qu D; Shen W; Li M
    Ecotoxicol Environ Saf; 2019 Jul; 176():125-131. PubMed ID: 30925328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity effects of microplastics and nanoplastics with cadmium on the alga Microcystis aeruginosa.
    Wang Q; Wang J; Chen H; Zhang Y
    Environ Sci Pollut Res Int; 2023 Feb; 30(7):17360-17373. PubMed ID: 36194332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations.
    Zhang Q; Song Q; Wang C; Zhou C; Lu C; Zhao M
    Sci Total Environ; 2017 Jan; 575():513-518. PubMed ID: 27614857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing arsenate metabolism in Microcystis aeruginosa and relieving risks of arsenite and microcystins by nano-Fe
    Xu F; Wang Z; Chen Y; Luo Y; Luo Z
    Environ Pollut; 2023 Aug; 330():121801. PubMed ID: 37169240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.