These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37540493)

  • 1. Monolayer Fullerene Membranes for Hydrogen Separation.
    Tong Y; Liu H; Dai S; Jiang DE
    Nano Lett; 2023 Aug; 23(16):7470-7476. PubMed ID: 37540493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore-in-Pore Engineering in a Covalent Organic Framework Membrane for Gas Separation.
    Fan H; Wang H; Peng M; Meng H; Mundstock A; Knebel A; Caro J
    ACS Nano; 2023 Apr; 17(8):7584-7594. PubMed ID: 37026681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning the Stacking Modes of Ultrathin Two-Dimensional Metal-Organic Framework Nanosheet Membranes for Highly Efficient Hydrogen Separation.
    Song S; Wang W; Zhao Y; Wu W; Wei Y; Wang H
    Angew Chem Int Ed Engl; 2023 Nov; 62(45):e202312995. PubMed ID: 37713602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable Polymeric Few-Nanometer Organosilica Membranes with Hydrothermal Stability for Selective Hydrogen Separation.
    Zhu L; Huang L; Venna SR; Blevins AK; Ding Y; Hopkinson DP; Swihart MT; Lin H
    ACS Nano; 2021 Jul; 15(7):12119-12128. PubMed ID: 34254506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-fullerene nanocomposite laminates for efficient hydrogen purification.
    Guo Q; Ghalei B; Qin D; Mizutani D; Joko I; Al-Aziz H; Higashino T; Ito MM; Imahori H; Sivaniah E
    Chem Commun (Camb); 2023 Aug; 59(66):10012-10015. PubMed ID: 37523152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gas Separation Membranes with Atom-Thick Nanopores: The Potential of Nanoporous Single-Layer Graphene.
    Villalobos LF; Babu DJ; Hsu KJ; Van Goethem C; Agrawal KV
    Acc Mater Res; 2022 Oct; 3(10):1073-1087. PubMed ID: 36338295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin Two-Dimensional Membranes Assembled by Ionic Covalent Organic Nanosheets with Reduced Apertures for Gas Separation.
    Ying Y; Tong M; Ning S; Ravi SK; Peh SB; Tan SC; Pennycook SJ; Zhao D
    J Am Chem Soc; 2020 Mar; 142(9):4472-4480. PubMed ID: 32056433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion-Gated Gas Separation through Porous Graphene.
    Tian Z; Mahurin SM; Dai S; Jiang DE
    Nano Lett; 2017 Mar; 17(3):1802-1807. PubMed ID: 28231000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thin, High-Flux, Self-Standing, Graphene Oxide Membranes for Efficient Hydrogen Separation from Gas Mixtures.
    Bouša D; Friess K; Pilnáček K; Vopička O; Lanč M; Fónod K; Pumera M; Sedmidubský D; Luxa J; Sofer Z
    Chemistry; 2017 Aug; 23(47):11416-11422. PubMed ID: 28568841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced CO
    Ma C; Urban JJ
    ChemSusChem; 2019 Oct; 12(19):4405-4411. PubMed ID: 31454469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Flux Vertically Aligned 2D Covalent Organic Framework Membrane with Enhanced Hydrogen Separation.
    Fan H; Peng M; Strauss I; Mundstock A; Meng H; Caro J
    J Am Chem Soc; 2020 Apr; 142(15):6872-6877. PubMed ID: 32223155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism and Prediction of Gas Permeation through Sub-Nanometer Graphene Pores: Comparison of Theory and Simulation.
    Yuan Z; Govind Rajan A; Misra RP; Drahushuk LW; Agrawal KV; Strano MS; Blankschtein D
    ACS Nano; 2017 Aug; 11(8):7974-7987. PubMed ID: 28696710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melamine-Doped Covalent Organic Framework Membranes for Enhanced Hydrogen Purification.
    Zheng W; Hou J; Liu C; Liu P; Li L; Chen L; Tang Z
    Chem Asian J; 2021 Nov; 16(22):3624-3629. PubMed ID: 34546656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoporous MoS
    Zhang Y; Meng Z; Shi Q; Gao H; Liu Y; Wang Y; Rao D; Deng K; Lu R
    J Phys Condens Matter; 2017 Sep; 29(37):375201. PubMed ID: 28675145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of Ultrathin Membranes Using 2D-MOF Nanosheets for Tunable Gas Separation.
    Li Y; Wang T; Liu D
    Chem Asian J; 2021 Nov; 16(21):3413-3418. PubMed ID: 34463030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin Covalent Organic Framework Membranes via a Multi-Interfacial Engineering Strategy for Gas Separation.
    Ying Y; Peh SB; Yang H; Yang Z; Zhao D
    Adv Mater; 2022 Jun; 34(25):e2104946. PubMed ID: 34535914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the Selectivity of ZIF-8/Polysulfone-Mixed Matrix Membranes by Polydopamine Modification for H
    Mei X; Yang S; Lu P; Zhang Y; Zhang J
    Front Chem; 2020; 8():528. PubMed ID: 32754574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable, Temperature-Dependent Gas Mixture Permeation and Separation through Suspended Nanoporous Single-Layer Graphene Membranes.
    Yuan Z; Benck JD; Eatmon Y; Blankschtein D; Strano MS
    Nano Lett; 2018 Aug; 18(8):5057-5069. PubMed ID: 30044919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrazine-Fused Porous Graphitic Framework-Based Mixed Matrix Membranes for Enhanced Gas Separations.
    Ma C; Li X; Zhang J; Liu Y; Urban JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(14):16922-16929. PubMed ID: 32182425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellulose-Based Carbon Molecular Sieve Membranes for Gas Separation: A Review.
    Araújo T; Bernardo G; Mendes A
    Molecules; 2020 Aug; 25(15):. PubMed ID: 32752305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.