These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37540588)

  • 1. Covalent Organic Frameworks for Neuromorphic Devices.
    Zhou K; Jia Z; Zhou Y; Ding G; Ma XQ; Niu W; Han ST; Zhao J; Zhou Y
    J Phys Chem Lett; 2023 Aug; 14(32):7173-7192. PubMed ID: 37540588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-Dimensional Covalent Organic Framework-Based Multilevel Memristors for Neuromorphic Computing.
    Zhou PK; Li Y; Zeng T; Chee MY; Huang Y; Yu Z; Yu H; Yu H; Huang W; Chen X
    Angew Chem Int Ed Engl; 2024 May; 63(20):e202402911. PubMed ID: 38511343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous crystalline materials for memories and neuromorphic computing systems.
    Ding G; Zhao J; Zhou K; Zheng Q; Han ST; Peng X; Zhou Y
    Chem Soc Rev; 2023 Oct; 52(20):7071-7136. PubMed ID: 37755573
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence.
    Wang J; Zhuge X; Zhuge F
    Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging photoelectric devices for neuromorphic vision applications: principles, developments, and outlooks.
    Zhang Y; Huang Z; Jiang J
    Sci Technol Adv Mater; 2023; 24(1):2186689. PubMed ID: 37007672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications.
    Liu R; Tan KT; Gong Y; Chen Y; Li Z; Xie S; He T; Lu Z; Yang H; Jiang D
    Chem Soc Rev; 2021 Jan; 50(1):120-242. PubMed ID: 33283811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudo-transistors for emerging neuromorphic electronics.
    Fu J; Wang J; He X; Ming J; Wang L; Wang Y; Shao H; Zheng C; Xie L; Ling H
    Sci Technol Adv Mater; 2023; 24(1):2180286. PubMed ID: 36970452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalent Organic Frameworks: Design, Synthesis, and Functions.
    Geng K; He T; Liu R; Dalapati S; Tan KT; Li Z; Tao S; Gong Y; Jiang Q; Jiang D
    Chem Rev; 2020 Aug; 120(16):8814-8933. PubMed ID: 31967791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review.
    Bag SP; Lee S; Song J; Kim J
    Biosensors (Basel); 2024 Mar; 14(3):. PubMed ID: 38534257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orderly Porous Covalent Organic Frameworks-based Materials: Superior Adsorbents for Pollutants Removal from Aqueous Solutions.
    Liu X; Pang H; Liu X; Li Q; Zhang N; Mao L; Qiu M; Hu B; Yang H; Wang X
    Innovation (Camb); 2021 Feb; 2(1):100076. PubMed ID: 34557733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress in Hybridization of Covalent Organic Frameworks and Metal-Organic Frameworks.
    Deng Y; Wang Y; Xiao X; Saucedo BJ; Zhu Z; Xie M; Xu X; Yao K; Zhai Y; Zhang Z; Chen J
    Small; 2022 Sep; 18(38):e2202928. PubMed ID: 35986438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-dimensional materials for synaptic electronics and neuromorphic systems.
    Wang S; Zhang DW; Zhou P
    Sci Bull (Beijing); 2019 Aug; 64(15):1056-1066. PubMed ID: 36659765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards High-Performance Resistive Switching Behavior through Embedding a D-A System into 2D Imine-Linked Covalent Organic Frameworks.
    Li C; Li D; Zhang W; Li H; Yu G
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27135-27143. PubMed ID: 34585820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent Organic Frameworks for Heterogeneous Catalysis: Principle, Current Status, and Challenges.
    Guo J; Jiang D
    ACS Cent Sci; 2020 Jun; 6(6):869-879. PubMed ID: 32607434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemistry of Covalent Organic Frameworks.
    Waller PJ; Gándara F; Yaghi OM
    Acc Chem Res; 2015 Dec; 48(12):3053-63. PubMed ID: 26580002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Memristive Devices Based on Two-Dimensional Transition Metal Chalcogenides for Neuromorphic Computing.
    Kwon KC; Baek JH; Hong K; Kim SY; Jang HW
    Nanomicro Lett; 2022 Feb; 14(1):58. PubMed ID: 35122527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems.
    Lv Z; Wang Y; Chen J; Wang J; Zhou Y; Han ST
    Chem Rev; 2020 May; 120(9):3941-4006. PubMed ID: 32202419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.