BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37540615)

  • 1. Abduction/Adduction Assistance From Powered Hip Exoskeleton Enables Modulation of User Step Width During Walking.
    Alili A; Fleming A; Nalam V; Liu M; Dean J; Huang H
    IEEE Trans Biomed Eng; 2024 Jan; 71(1):334-342. PubMed ID: 37540615
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Bilateral Assistance for Hemiparetic Gait Post-Stroke Using a Powered Hip Exoskeleton.
    Pan YT; Kang I; Joh J; Kim P; Herrin KR; Kesar TM; Sawicki GS; Young AJ
    Ann Biomed Eng; 2023 Feb; 51(2):410-421. PubMed ID: 35963920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds.
    Nuckols RW; Sawicki GS
    J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking with wider steps increases stance phase gluteus medius activity.
    Kubinski SN; McQueen CA; Sittloh KA; Dean JC
    Gait Posture; 2015 Jan; 41(1):130-5. PubMed ID: 25300241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot-mediated overground gait training for transfemoral amputees with a powered bilateral hip orthosis: a pilot study.
    Sanz-Morère CB; Martini E; Meoni B; Arnetoli G; Giffone A; Doronzio S; Fanciullacci C; Parri A; Conti R; Giovacchini F; Friðriksson Þ; Romo D; Crea S; Molino-Lova R; Vitiello N
    J Neuroeng Rehabil; 2021 Jul; 18(1):111. PubMed ID: 34217307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.
    Koller JR; Jacobs DA; Ferris DP; Remy CD
    J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emulator-Based Optimization of a Semi-Active Hip Exoskeleton Concept: Sweeping Impedance Across Walking Speeds.
    Shafer BA; Powell JC; Young AJ; Sawicki GS
    IEEE Trans Biomed Eng; 2023 Jan; 70(1):271-282. PubMed ID: 35788460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical comparison of powered robotic exoskeleton gait with normal and slow walking: An investigation with able-bodied individuals.
    Hayes SC; White M; White HSF; Vanicek N
    Clin Biomech (Bristol, Avon); 2020 Dec; 80():105133. PubMed ID: 32777685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control.
    Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude.
    Kao PC; Lewis CL; Ferris DP
    J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motor modules during adaptation to walking in a powered ankle exoskeleton.
    Jacobs DA; Koller JR; Steele KM; Ferris DP
    J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait Adaptation to Asymmetric Hip Stiffness Applied by a Robotic Exoskeleton.
    Abdikadirova B; Price M; Jaramillo JM; Hoogkamer W; Huber ME
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():791-799. PubMed ID: 38224507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invariant hip moment pattern while walking with a robotic hip exoskeleton.
    Lewis CL; Ferris DP
    J Biomech; 2011 Mar; 44(5):789-93. PubMed ID: 21333995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-aligning exoskeleton hip joint: Kinematic design with five revolute, three prismatic and one ball joint.
    Beil J; Marquardt C; Asfour T
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1349-1355. PubMed ID: 28814008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Powered Hip Exoskeleton Reduces Residual Hip Effort Without Affecting Kinematics and Balance in Individuals With Above-Knee Amputations During Walking.
    Ishmael MK; Gunnell A; Pruyn K; Creveling S; Hunt G; Hood S; Archangeli D; Foreman KB; Lenzi T
    IEEE Trans Biomed Eng; 2023 Apr; 70(4):1162-1171. PubMed ID: 36194722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Torque Predictions From Electromyography Across Multiple Levels of Active Exoskeleton Assistance Despite Non-linear Reorganization of Locomotor Output.
    George JA; Gunnell AJ; Archangeli D; Hunt G; Ishmael M; Foreman KB; Lenzi T
    Front Neurorobot; 2021; 15():700823. PubMed ID: 34803646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact Hip-Force Sensor for a Gait-Assistance Exoskeleton System.
    Choi H; Seo K; Hyung S; Shim Y; Lim SC
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29438300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ankle Exoskeleton Assistance can Affect Step Regulation during Self-Paced Walking.
    Canete S; Wilson EB; Jacobs DA
    IEEE Trans Neural Syst Rehabil Eng; 2022 Dec; PP():. PubMed ID: 37015569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powered single hip joint exoskeletons for gait rehabilitation: a systematic review and Meta-analysis.
    Daliri M; Ghorbani M; Akbarzadeh A; Negahban H; Ebrahimzadeh MH; Rahmanipour E; Moradi A
    BMC Musculoskelet Disord; 2024 Jan; 25(1):80. PubMed ID: 38245729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.