These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37540654)

  • 41. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments.
    Knapp AK; Hoover DL; Wilcox KR; Avolio ML; Koerner SE; La Pierre KJ; Loik ME; Luo Y; Sala OE; Smith MD
    Glob Chang Biol; 2015 Jul; 21(7):2624-2633. PubMed ID: 25652911
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of the dynamic vegetation on climate extremes during the wheat growing period over China.
    Dong S; Shi Y
    Sci Total Environ; 2022 May; 819():153079. PubMed ID: 35033571
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Implications of changes in temperature and precipitation on the discharge of Brahmaputra River in the urban watershed of Guwahati, India.
    Ahmed IA; Shahfahad ; Dutta DK; Baig MRI; Roy SS; Rahman A
    Environ Monit Assess; 2021 Jul; 193(8):518. PubMed ID: 34312714
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region.
    Lu M; Xu Y; Shan N; Wang Q; Yuan J; Wang J
    Sci Total Environ; 2019 Jul; 673():64-73. PubMed ID: 30986683
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Western disturbances alter the trend of winter precipitation and its extremes over Northwest Himalayas: Kashmir Himalaya.
    Dar J
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):83439-83451. PubMed ID: 37344715
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Global assessment of spatiotemporal variability of wet, normal and dry conditions using multiscale entropy-based approach.
    Sreeparvathy V; Srinivas VV
    Sci Rep; 2022 Jun; 12(1):9767. PubMed ID: 35697830
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Hydrology of mountainous areas in the upper Indus Basin, Northern Pakistan with the perspective of climate change.
    Ahmad Z; Hafeez M; Ahmad I
    Environ Monit Assess; 2012 Sep; 184(9):5255-74. PubMed ID: 22109645
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Spatio-temporal drought assessment of the Subarnarekha River basin, India, using CHIRPS-derived hydrometeorological indices.
    Tabassum F; Krishna AP
    Environ Monit Assess; 2022 Oct; 194(12):902. PubMed ID: 36251084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Impacts and socioeconomic exposures of global extreme precipitation events in 1.5 and 2.0 °C warmer climates.
    Shi X; Chen J; Gu L; Xu CY; Chen H; Zhang L
    Sci Total Environ; 2021 Apr; 766():142665. PubMed ID: 33131855
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Changes in precipitation extremes in the Yangtze River Basin during 1960-2019 and the association with global warming, ENSO, and local effects.
    Li X; Zhang K; Gu P; Feng H; Yin Y; Chen W; Cheng B
    Sci Total Environ; 2021 Mar; 760():144244. PubMed ID: 33348157
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of impact of environmental changes on precipitation pattern of Pakistan.
    Ghumman AR; Hassan I; Khan QU; Kamal MA
    Environ Monit Assess; 2013 Jun; 185(6):4897-905. PubMed ID: 23064944
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The rise of Indian summer monsoon precipitation extremes and its correlation with long-term changes of climate and anthropogenic factors.
    Falga R; Wang C
    Sci Rep; 2022 Jul; 12(1):11985. PubMed ID: 35835829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change.
    Islam ARMT; Islam HMT; Shahid S; Khatun MK; Ali MM; Rahman MS; Ibrahim SM; Almoajel AM
    J Environ Manage; 2021 Jul; 289():112505. PubMed ID: 33819656
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extreme climate projections under representative concentration pathways in the Lower Songkhram River Basin, Thailand.
    Shrestha S; Roachanakanan R
    Heliyon; 2021 Feb; 7(2):e06146. PubMed ID: 33665405
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Extreme precipitation patterns in the Asia-Pacific region and its correlation with El Niño-Southern Oscillation (ENSO).
    An D; Eggeling J; Zhang L; He H; Sapkota A; Wang YC; Gao C
    Sci Rep; 2023 Jul; 13(1):11068. PubMed ID: 37422491
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Temporal and spatial variations of annual precipitation and meteorological drought in China during 1951-2018].
    Lu C; Ma L; Liu TX; Huang X
    Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1572-1580. PubMed ID: 35729135
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Climatic and drought characteristics in the loess hilly-gully region of China from 1957 to 2014.
    Zhao X; Li Z; Zhu Q; Zhu D; Liu H
    PLoS One; 2017; 12(6):e0178701. PubMed ID: 28594936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Temporal-spatial and non-stationarity characteristics of extreme precipitation in the Poyang Lake Basin, China].
    Lei XY; Gao L; Ma MM; Dang HF; Gao JY
    Ying Yong Sheng Tai Xue Bao; 2021 Sep; 32(9):3277-3287. PubMed ID: 34658214
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Climatological aspects and changes in temperature and precipitation extremes in Viçosa-Minas Gerais.
    Avila-Diaz A; Justino F; Lindemann DS; Rodrigues JM; Ferreira GR
    An Acad Bras Cienc; 2020; 92(2):e20190388. PubMed ID: 32638870
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Climatology and changes in hourly precipitation extremes over China during 1970-2018.
    Li X; Zhang K; Bao H; Zhang H
    Sci Total Environ; 2022 Sep; 839():156297. PubMed ID: 35636542
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.