These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 37540669)

  • 41. Consequences of adaptation of TAL effectors on host susceptibility to Xanthomonas.
    Teper D; Wang N
    PLoS Genet; 2021 Jan; 17(1):e1009310. PubMed ID: 33465093
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A transcription activator-like effector toolbox for genome engineering.
    Sanjana NE; Cong L; Zhou Y; Cunniff MM; Feng G; Zhang F
    Nat Protoc; 2012 Jan; 7(1):171-92. PubMed ID: 22222791
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Split-TALE: A TALE-Based Two-Component System for Synthetic Biology Applications in Planta.
    Schreiber T; Prange A; Hoppe T; Tissier A
    Plant Physiol; 2019 Mar; 179(3):1001-1012. PubMed ID: 30643014
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evolution of Transcription Activator-Like Effectors in Xanthomonas oryzae.
    Erkes A; Reschke M; Boch J; Grau J
    Genome Biol Evol; 2017 Jun; 9(6):1599-1615. PubMed ID: 28637323
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Imaging-Based In Situ Analysis of 5-Methylcytosine at Low Repetitive Single Gene Loci with Transcription-Activator-Like Effector Probes.
    Jung A; Munõz-López Á; Buchmuller BC; Banerjee S; Summerer D
    ACS Chem Biol; 2023 Feb; 18(2):230-236. PubMed ID: 36693632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A do-it-yourself protocol for simple transcription activator-like effector assembly.
    Uhde-Stone C; Gor N; Chin T; Huang J; Lu B
    Biol Proced Online; 2013 Jan; 15(1):3. PubMed ID: 23316790
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deciphering TAL effectors for 5-methylcytosine and 5-hydroxymethylcytosine recognition.
    Zhang Y; Liu L; Guo S; Song J; Zhu C; Yue Z; Wei W; Yi C
    Nat Commun; 2017 Oct; 8(1):901. PubMed ID: 29026078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Base editing in human cells with monomeric DddA-TALE fusion deaminases.
    Mok YG; Lee JM; Chung E; Lee J; Lim K; Cho SI; Kim JS
    Nat Commun; 2022 Jul; 13(1):4038. PubMed ID: 35821233
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A guide for drug inducible genome editing with HIT systems.
    Zhao C; Wei S; Wang Y
    Methods Enzymol; 2019; 621():53-68. PubMed ID: 31128789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broad-spectrum resistance to bacterial blight in rice using genome editing.
    Oliva R; Ji C; Atienza-Grande G; Huguet-Tapia JC; Perez-Quintero A; Li T; Eom JS; Li C; Nguyen H; Liu B; Auguy F; Sciallano C; Luu VT; Dossa GS; Cunnac S; Schmidt SM; Slamet-Loedin IH; Vera Cruz C; Szurek B; Frommer WB; White FF; Yang B
    Nat Biotechnol; 2019 Nov; 37(11):1344-1350. PubMed ID: 31659337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. T(ell)TALE signs of aging.
    Taneja R; Kennedy BK
    Cell Res; 2017 Apr; 27(4):453-454. PubMed ID: 28281540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. TAL Effector DNA-Binding Principles and Specificity.
    Richter A; Streubel J; Boch J
    Methods Mol Biol; 2016; 1338():9-25. PubMed ID: 26443210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TALE.Sense: A Versatile DNA Sensor Platform for Live Mammalian Cells.
    Taghbalout A; Jillette N; Cheng AW
    ACS Synth Biol; 2022 Jan; 11(1):116-124. PubMed ID: 34931802
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Assembly of TALE-based DNA scaffold for the enhancement of exogenous multi-enzymatic pathway.
    Xie SS; Qiu XY; Zhu LY; Zhu CS; Liu CY; Wu XM; Zhu L; Zhang DY
    J Biotechnol; 2019 Apr; 296():69-74. PubMed ID: 30885657
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Modified nucleobase-specific gene regulation using engineered transcription activator-like effectors.
    Tsuji S; Imanishi M
    Adv Drug Deliv Rev; 2019 Jul; 147():59-65. PubMed ID: 31513826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering Broad-Spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-Binding Elements of Multiple Susceptibility Genes in Rice.
    Xu Z; Xu X; Gong Q; Li Z; Li Y; Wang S; Yang Y; Ma W; Liu L; Zhu B; Zou L; Chen G
    Mol Plant; 2019 Nov; 12(11):1434-1446. PubMed ID: 31493565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Context influences on TALE-DNA binding revealed by quantitative profiling.
    Rogers JM; Barrera LA; Reyon D; Sander JD; Kellis M; Joung JK; Bulyk ML
    Nat Commun; 2015 Jun; 6():7440. PubMed ID: 26067805
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improved specificity of TALE-based genome editing using an expanded RVD repertoire.
    Miller JC; Zhang L; Xia DF; Campo JJ; Ankoudinova IV; Guschin DY; Babiarz JE; Meng X; Hinkley SJ; Lam SC; Paschon DE; Vincent AI; Dulay GP; Barlow KA; Shivak DA; Leung E; Kim JD; Amora R; Urnov FD; Gregory PD; Rebar EJ
    Nat Methods; 2015 May; 12(5):465-71. PubMed ID: 25799440
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Divalent cations promote TALE DNA-binding specificity.
    Cuculis L; Zhao C; Abil Z; Zhao H; Shukla D; Schroeder CM
    Nucleic Acids Res; 2020 Feb; 48(3):1406-1422. PubMed ID: 31863586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Designed Transcriptional Regulation in Mammalian Cells Based on TALE- and CRISPR/dCas9.
    Lebar T; Jerala R
    Methods Mol Biol; 2018; 1772():191-203. PubMed ID: 29754229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.