BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37540775)

  • 1. Scarless Modification of the Drosophila Genome Near Any Mapped attP Sites.
    Feng S; Mann RS
    Curr Protoc; 2023 Aug; 3(8):e855. PubMed ID: 37540775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scarless engineering of the Drosophila genome near any site-specific integration site.
    Feng S; Lu S; Grueber WB; Mann RS
    Genetics; 2021 Mar; 217(3):. PubMed ID: 33772309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-range targeted manipulation of the Drosophila genome by site-specific integration and recombinational resolution.
    Wesolowska N; Rong YS
    Genetics; 2013 Feb; 193(2):411-9. PubMed ID: 23150601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast and efficient Drosophila melanogaster gene knock-ins using MiMIC transposons.
    Vilain S; Vanhauwaert R; Maes I; Schoovaerts N; Zhou L; Soukup S; da Cunha R; Lauwers E; Fiers M; Verstreken P
    G3 (Bethesda); 2014 Oct; 4(12):2381-7. PubMed ID: 25298537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31.
    Groth AC; Fish M; Nusse R; Calos MP
    Genetics; 2004 Apr; 166(4):1775-82. PubMed ID: 15126397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust ΦC31-Mediated Genome Engineering in
    Voutev R; Mann RS
    G3 (Bethesda); 2018 May; 8(5):1399-1402. PubMed ID: 29523637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase.
    Bi Y; Liu X; Zhang L; Shao C; Ma Z; Hua Z; Zhang L; Li L; Hua W; Xiao H; Wei Q; Zheng X
    BMC Mol Biol; 2013 Sep; 14():20. PubMed ID: 24010979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase.
    Venken KJ; Bellen HJ
    Methods Mol Biol; 2012; 859():203-28. PubMed ID: 22367874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel Genomic Engineering of Two
    Blanco-Redondo B; Langenhan T
    G3 (Bethesda); 2018 Aug; 8(9):3109-3118. PubMed ID: 30065043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes.
    Venken KJ; Schulze KL; Haelterman NA; Pan H; He Y; Evans-Holm M; Carlson JW; Levis RW; Spradling AC; Hoskins RA; Bellen HJ
    Nat Methods; 2011 Sep; 8(9):737-43. PubMed ID: 21985007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Drosophila attP containing cell lines using CRISPR-Cas9.
    Mariyappa D; Luhur A; Overton D; Zelhof AC
    G3 (Bethesda); 2021 Aug; 11(8):. PubMed ID: 33963853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid Screening for CRISPR-Directed Editing of the Drosophila Genome Using white Coconversion.
    Ge DT; Tipping C; Brodsky MH; Zamore PD
    G3 (Bethesda); 2016 Oct; 6(10):3197-3206. PubMed ID: 27543296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tools for Targeted Genome Engineering of Established Drosophila Cell Lines.
    Cherbas L; Hackney J; Gong L; Salzer C; Mauser E; Zhang D; Cherbas P
    Genetics; 2015 Dec; 201(4):1307-18. PubMed ID: 26450921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Captured segment exchange: a strategy for custom engineering large genomic regions in Drosophila melanogaster.
    Bateman JR; Palopoli MF; Dale ST; Stauffer JE; Shah AL; Johnson JE; Walsh CW; Flaten H; Parsons CM
    Genetics; 2013 Feb; 193(2):421-30. PubMed ID: 23150604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a phiC31 "Disintegrase" to make new attP sites in the Drosophila genome at locations showing chromosomal position effects.
    Maharjan M; Maeda RK; Karch F; Hart CM
    PLoS One; 2018; 13(10):e0205538. PubMed ID: 30296303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement on the genetic engineering of an invasive agricultural pest insect, the cherry vinegar fly, Drosophila suzukii.
    Ahmed HMM; Heese F; Wimmer EA
    BMC Genet; 2020 Dec; 21(Suppl 2):139. PubMed ID: 33339511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A powerful method combining homologous recombination and site-specific recombination for targeted mutagenesis in Drosophila.
    Gao G; McMahon C; Chen J; Rong YS
    Proc Natl Acad Sci U S A; 2008 Sep; 105(37):13999-4004. PubMed ID: 18772376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational derivatives of PhiC31 integrase with increased efficiency and specificity.
    Keravala A; Lee S; Thyagarajan B; Olivares EC; Gabrovsky VE; Woodard LE; Calos MP
    Mol Ther; 2009 Jan; 17(1):112-20. PubMed ID: 19002165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-Directed φC31-Mediated Integration and Cassette Exchange in Anopheles Vectors of Malaria.
    Adolfi A; Lynd A; Lycett GJ; James AA
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33616090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeted engineering of the Drosophila genome.
    Huang J; Zhou W; Dong W; Hong Y
    Fly (Austin); 2009; 3(4):274-7. PubMed ID: 19823033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.