These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
257 related articles for article (PubMed ID: 37540835)
41. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Han HM; Gopal R; Park Y Amino Acids; 2016 Feb; 48(2):505-22. PubMed ID: 26450121 [TBL] [Abstract][Full Text] [Related]
42. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Mba IE; Nweze EI Yale J Biol Med; 2022 Dec; 95(4):445-463. PubMed ID: 36568838 [TBL] [Abstract][Full Text] [Related]
43. Very Short and Stable Lactoferricin-Derived Antimicrobial Peptides: Design Principles and Potential Uses. Svendsen JSM; Grant TM; Rennison D; Brimble MA; Svenson J Acc Chem Res; 2019 Mar; 52(3):749-759. PubMed ID: 30829472 [TBL] [Abstract][Full Text] [Related]
44. Design and characterization of novel hybrid antimicrobial peptides based on cecropin A, LL-37 and magainin II. Fox MA; Thwaite JE; Ulaeto DO; Atkins TP; Atkins HS Peptides; 2012 Feb; 33(2):197-205. PubMed ID: 22289499 [TBL] [Abstract][Full Text] [Related]
45. Functional and Toxicological Evaluation of MAA-41: A Novel Rationally Designed Antimicrobial Peptide Using Hybridization and Modification Methods from LL-37 and BMAP-28. Masadeh M; Ayyad A; Haddad R; Alsaggar M; Alzoubi K; Alrabadi N Curr Pharm Des; 2022; 28(26):2177-2188. PubMed ID: 35792128 [TBL] [Abstract][Full Text] [Related]
46. Salt-resistant short antimicrobial peptides. Mohanram H; Bhattacharjya S Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911 [TBL] [Abstract][Full Text] [Related]
47. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Bellotti D; Remelli M Molecules; 2022 Jul; 27(14):. PubMed ID: 35889455 [TBL] [Abstract][Full Text] [Related]
48. Truncated antimicrobial peptides from marine organisms retain anticancer activity and antibacterial activity against multidrug-resistant Staphylococcus aureus. Lin MC; Hui CF; Chen JY; Wu JL Peptides; 2013 Jun; 44():139-48. PubMed ID: 23598079 [TBL] [Abstract][Full Text] [Related]
49. Peptide Design Principles for Antimicrobial Applications. Torres MDT; Sothiselvam S; Lu TK; de la Fuente-Nunez C J Mol Biol; 2019 Aug; 431(18):3547-3567. PubMed ID: 30611750 [TBL] [Abstract][Full Text] [Related]
50. Cooperativity in Bacterial Membrane Association Controls the Synergistic Activities of Antimicrobial Peptides. Nguyen TN; Teimouri H; Medvedeva A; Kolomeisky AB J Phys Chem B; 2022 Sep; 126(38):7365-7372. PubMed ID: 36108158 [TBL] [Abstract][Full Text] [Related]
51. Recent Advances on Antimicrobial Peptides from Milk: Molecular Properties, Mechanisms, and Applications. Wang Z; Xu J; Zeng X; Du Q; Lan H; Zhang J; Pan D; Tu M J Agric Food Chem; 2024 Jan; 72(1):80-93. PubMed ID: 38152984 [TBL] [Abstract][Full Text] [Related]
52. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Dong Z; Zhang X; Zhang Q; Tangthianchaichana J; Guo M; Du S; Lu Y Int J Nanomedicine; 2024; 19():1017-1039. PubMed ID: 38317847 [TBL] [Abstract][Full Text] [Related]
54. Temperature-Controlled Reversible Exposure and Hiding of Antimicrobial Peptides on an Implant for Killing Bacteria at Room Temperature and Improving Biocompatibility in Vivo. Zhan J; Wang L; Zhu Y; Gao H; Chen Y; Chen J; Jia Y; He J; Fang Z; Zhu Y; Mao C; Ren L; Wang Y ACS Appl Mater Interfaces; 2018 Oct; 10(42):35830-35837. PubMed ID: 30360126 [TBL] [Abstract][Full Text] [Related]
55. Development of a Selective and Stable Antimicrobial Peptide. Groover KE; Randall JR; Davies BW ACS Infect Dis; 2024 Jun; 10(6):2151-2160. PubMed ID: 38712889 [TBL] [Abstract][Full Text] [Related]
56. Archetypal tryptophan-rich antimicrobial peptides: properties and applications. Shagaghi N; Palombo EA; Clayton AH; Bhave M World J Microbiol Biotechnol; 2016 Feb; 32(2):31. PubMed ID: 26748808 [TBL] [Abstract][Full Text] [Related]
57. The therapeutic applications of antimicrobial peptides (AMPs): a patent review. Kang HK; Kim C; Seo CH; Park Y J Microbiol; 2017 Jan; 55(1):1-12. PubMed ID: 28035594 [TBL] [Abstract][Full Text] [Related]
58. Infection-activated lipopeptide nanotherapeutics with adaptable geometrical morphology for in vivo bacterial ablation. Yu QH; Huang R; Wu KY; Han XL; Cheng YJ; Liu WL; Zhang AQ; Qin SY Acta Biomater; 2022 Dec; 154():359-373. PubMed ID: 36191775 [TBL] [Abstract][Full Text] [Related]
59. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. Monteiro C; Fernandes M; Pinheiro M; Maia S; Seabra CL; Ferreira-da-Silva F; Costa F; Reis S; Gomes P; Martins MC Biochim Biophys Acta; 2015 May; 1848(5):1139-46. PubMed ID: 25680229 [TBL] [Abstract][Full Text] [Related]
60. Antimicrobial Peptides as Potential Alternatives to Antibiotics in Food Animal Industry. Wang S; Zeng X; Yang Q; Qiao S Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27153059 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]