These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37540875)

  • 1. Complexity Phase Transitions Generated by Entanglement.
    Ghosh S; Deshpande A; Hangleiter D; Gorshkov AV; Fefferman B
    Phys Rev Lett; 2023 Jul; 131(3):030601. PubMed ID: 37540875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entanglement from Tensor Networks on a Trapped-Ion Quantum Computer.
    Foss-Feig M; Ragole S; Potter A; Dreiling J; Figgatt C; Gaebler J; Hall A; Moses S; Pino J; Spaun B; Neyenhuis B; Hayes D
    Phys Rev Lett; 2022 Apr; 128(15):150504. PubMed ID: 35499881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Entanglement in a 20-Qubit Superconducting Quantum Computer.
    Mooney GJ; Hill CD; Hollenberg LCL
    Sci Rep; 2019 Sep; 9(1):13465. PubMed ID: 31530848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transforming graph states using single-qubit operations.
    Dahlberg A; Wehner S
    Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2123):. PubMed ID: 29807902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Bipartite Entanglement Detection Scheme with a Quantum Adversarial Solver.
    Yin XF; Du Y; Fei YY; Zhang R; Liu LZ; Mao Y; Liu T; Hsieh MH; Li L; Liu NL; Tao D; Chen YA; Pan JW
    Phys Rev Lett; 2022 Mar; 128(11):110501. PubMed ID: 35363009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of genuine entanglement up to 51 superconducting qubits.
    Cao S; Wu B; Chen F; Gong M; Wu Y; Ye Y; Zha C; Qian H; Ying C; Guo S; Zhu Q; Huang HL; Zhao Y; Li S; Wang S; Yu J; Fan D; Wu D; Su H; Deng H; Rong H; Li Y; Zhang K; Chung TH; Liang F; Lin J; Xu Y; Sun L; Guo C; Li N; Huo YH; Peng CZ; Lu CY; Yuan X; Zhu X; Pan JW
    Nature; 2023 Jul; 619(7971):738-742. PubMed ID: 37438533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Qubit vitrification and entanglement criticality on a quantum simulator.
    Côté J; Kourtis S
    Nat Commun; 2022 Dec; 13(1):7395. PubMed ID: 36456566
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deterministic multi-qubit entanglement in a quantum network.
    Zhong Y; Chang HS; Bienfait A; Dumur É; Chou MH; Conner CR; Grebel J; Povey RG; Yan H; Schuster DI; Cleland AN
    Nature; 2021 Feb; 590(7847):571-575. PubMed ID: 33627810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking treewidth as a practical component of tensor network simulations.
    Dumitrescu EF; Fisher AL; Goodrich TD; Humble TS; Sullivan BD; Wright AL
    PLoS One; 2018; 13(12):e0207827. PubMed ID: 30562341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of three-qubit entangled states using superconducting phase qubits.
    Neeley M; Bialczak RC; Lenander M; Lucero E; Mariantoni M; O'Connell AD; Sank D; Wang H; Weides M; Wenner J; Yin Y; Yamamoto T; Cleland AN; Martinis JM
    Nature; 2010 Sep; 467(7315):570-3. PubMed ID: 20882012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization.
    Orús R; Wei TC; Buerschaper O; García-Saez A
    Phys Rev Lett; 2014 Dec; 113(25):257202. PubMed ID: 25554905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tight Bounds on Pauli Channel Learning without Entanglement.
    Chen S; Oh C; Zhou S; Huang HY; Jiang L
    Phys Rev Lett; 2024 May; 132(18):180805. PubMed ID: 38759184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transitions in Computational Complexity of Continuous-Time Local Open Quantum Dynamics.
    Trivedi R; Cirac JI
    Phys Rev Lett; 2022 Dec; 129(26):260405. PubMed ID: 36608200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-qubit entanglement and algorithms on a neutral-atom quantum computer.
    Graham TM; Song Y; Scott J; Poole C; Phuttitarn L; Jooya K; Eichler P; Jiang X; Marra A; Grinkemeyer B; Kwon M; Ebert M; Cherek J; Lichtman MT; Gillette M; Gilbert J; Bowman D; Ballance T; Campbell C; Dahl ED; Crawford O; Blunt NS; Rogers B; Noel T; Saffman M
    Nature; 2022 Apr; 604(7906):457-462. PubMed ID: 35444321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and measurement of three-qubit entanglement in a superconducting circuit.
    Dicarlo L; Reed MD; Sun L; Johnson BR; Chow JM; Gambetta JM; Frunzio L; Girvin SM; Devoret MH; Schoelkopf RJ
    Nature; 2010 Sep; 467(7315):574-8. PubMed ID: 20882013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification of Logic-Qubit Entanglement.
    Zhou L; Sheng YB
    Sci Rep; 2016 Jul; 6():28813. PubMed ID: 27377165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent entanglement in arrays of interacting particles.
    Briegel HJ; Raussendorf R
    Phys Rev Lett; 2001 Jan; 86(5):910-3. PubMed ID: 11177971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of entanglement in quantum computers with imperfections.
    Montangero S; Benenti G; Fazio R
    Phys Rev Lett; 2003 Oct; 91(18):187901. PubMed ID: 14611314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical Quantum Phase Transitions of the Schwinger Model: Real-Time Dynamics on IBM Quantum.
    Pomarico D; Cosmai L; Facchi P; Lupo C; Pascazio S; Pepe FV
    Entropy (Basel); 2023 Apr; 25(4):. PubMed ID: 37190397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometry of Faithful Entanglement.
    Gühne O; Mao Y; Yu XD
    Phys Rev Lett; 2021 Apr; 126(14):140503. PubMed ID: 33891460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.