BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37541027)

  • 1. The multifaceted functions of homologous recombination in dealing with replication-associated DNA damages.
    Chakraborty S; Schirmeisen K; Lambert SA
    DNA Repair (Amst); 2023 Sep; 129():103548. PubMed ID: 37541027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preserving replication fork integrity and competence via the homologous recombination pathway.
    Ait Saada A; Lambert SAE; Carr AM
    DNA Repair (Amst); 2018 Nov; 71():135-147. PubMed ID: 30220600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic instability is prevented by Mrc1-dependent spatio-temporal separation of replicative and repair activities of homologous recombination: homologous recombination tolerates replicative stress by Mrc1-regulated replication and repair activities operating at S and G2 in distinct subnuclear compartments.
    Prado F
    Bioessays; 2014 May; 36(5):451-62. PubMed ID: 24615940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication stress-induced genome instability: the dark side of replication maintenance by homologous recombination.
    Carr AM; Lambert S
    J Mol Biol; 2013 Nov; 425(23):4733-44. PubMed ID: 23643490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous Recombination as a Fundamental Genome Surveillance Mechanism during DNA Replication.
    Spies J; Polasek-Sedlackova H; Lukas J; Somyajit K
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow Replication Fork Velocity of Homologous Recombination-Defective Cells Results from Endogenous Oxidative Stress.
    Wilhelm T; Ragu S; Magdalou I; Machon C; Dardillac E; Técher H; Guitton J; Debatisse M; Lopez BS
    PLoS Genet; 2016 May; 12(5):e1006007. PubMed ID: 27135742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EEPD1 Rescues Stressed Replication Forks and Maintains Genome Stability by Promoting End Resection and Homologous Recombination Repair.
    Wu Y; Lee SH; Williamson EA; Reinert BL; Cho JH; Xia F; Jaiswal AS; Srinivasan G; Patel B; Brantley A; Zhou D; Shao L; Pathak R; Hauer-Jensen M; Singh S; Kong K; Wu X; Kim HS; Beissbarth T; Gaedcke J; Burma S; Nickoloff JA; Hromas RA
    PLoS Genet; 2015 Dec; 11(12):e1005675. PubMed ID: 26684013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NEK8 regulates DNA damage-induced RAD51 foci formation and replication fork protection.
    Abeyta A; Castella M; Jacquemont C; Taniguchi T
    Cell Cycle; 2017 Feb; 16(4):335-347. PubMed ID: 27892797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endonuclease EEPD1 mediates synthetic lethality in RAD52-depleted BRCA1 mutant breast cancer cells.
    Hromas R; Kim HS; Sidhu G; Williamson E; Jaiswal A; Totterdale TA; Nole J; Lee SH; Nickoloff JA; Kong KY
    Breast Cancer Res; 2017 Nov; 19(1):122. PubMed ID: 29145865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homologous recombination within repetitive DNA.
    Polleys EJ; Freudenreich CH
    Curr Opin Genet Dev; 2021 Dec; 71():143-153. PubMed ID: 34464817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Building up and breaking down: mechanisms controlling recombination during replication.
    Branzei D; Szakal B
    Crit Rev Biochem Mol Biol; 2017 Aug; 52(4):381-394. PubMed ID: 28325102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of arrested replication forks by homologous recombination is error-prone.
    Iraqui I; Chekkal Y; Jmari N; Pietrobon V; Fréon K; Costes A; Lambert SA
    PLoS Genet; 2012; 8(10):e1002976. PubMed ID: 23093942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel role for the mono-ADP-ribosyltransferase PARP14/ARTD8 in promoting homologous recombination and protecting against replication stress.
    Nicolae CM; Aho ER; Choe KN; Constantin D; Hu HJ; Lee D; Myung K; Moldovan GL
    Nucleic Acids Res; 2015 Mar; 43(6):3143-53. PubMed ID: 25753673
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Regulation of Homologous Recombination by Helicases.
    Huselid E; Bunting SF
    Genes (Basel); 2020 May; 11(5):. PubMed ID: 32369918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential role of RAD51 paralog complexes in replication fork remodeling and restart.
    Berti M; Teloni F; Mijic S; Ursich S; Fuchs J; Palumbieri MD; Krietsch J; Schmid JA; Garcin EB; Gon S; Modesti M; Altmeyer M; Lopes M
    Nat Commun; 2020 Jul; 11(1):3531. PubMed ID: 32669601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An insight into understanding the coupling between homologous recombination mediated DNA repair and chromatin remodeling mechanisms in plant genome: an update.
    Banerjee S; Roy S
    Cell Cycle; 2021 Sep; 20(18):1760-1784. PubMed ID: 34437813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of ubiquitination and the maintenance of replication fork stability in cancer therapy.
    Xia D; Zhu X; Wang Y; Gong P; Su HS; Xu X
    Biosci Rep; 2023 Oct; 43(10):. PubMed ID: 37728310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Replication fork instability and the consequences of fork collisions from rereplication.
    Alexander JL; Orr-Weaver TL
    Genes Dev; 2016 Oct; 30(20):2241-2252. PubMed ID: 27898391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maintenance of fork integrity at damaged DNA and natural pause sites.
    Tourrière H; Pasero P
    DNA Repair (Amst); 2007 Jul; 6(7):900-13. PubMed ID: 17379579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of SIM2s inhibits RAD51 binding and leads to unresolved replication stress.
    Pearson SJ; Elswood J; Barhoumi R; Ming-Whitfield B; Rijnkels M; Porter WW
    Breast Cancer Res; 2019 Nov; 21(1):125. PubMed ID: 31775907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.