These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 37541129)

  • 1. Comment on "Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L" by T. Buckley, T. Vuong, K. Karanam, P.H.N. Vo, P. Shukla, M. Firouzi & V. Rudolph, Water Research 239, 120028.
    Stevenson P
    Water Res; 2023 Sep; 243():120374. PubMed ID: 37541129
    [No Abstract]   [Full Text] [Related]  

  • 2. Response to 'Comment on "Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L" by T. Buckley, T. Vuong, K. Karanam, P.H.N. Vo, P. Shukla, M. Firouzi & V. Rudolph, Water research 239, 120028'.
    Buckley T; Vuong T; Karanam K; Vo PHN; Shukla P; Firouzi M; Rudolph V
    Water Res; 2024 Feb; 249():120811. PubMed ID: 38103443
    [No Abstract]   [Full Text] [Related]  

  • 3. Using foam fractionation to estimate PFAS air-water interface adsorption behaviour at ng/L and µg/L concentrations.
    Buckley T; Vuong T; Karanam K; Vo PHN; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Jul; 239():120028. PubMed ID: 37209512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of different co-foaming agents on PFAS removal from the environment by foam fractionation.
    Buckley T; Karanam K; Han H; Vo HNP; Shukla P; Firouzi M; Rudolph V
    Water Res; 2023 Feb; 230():119532. PubMed ID: 36584659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PFAS removal from landfill leachate by ozone foam fractionation: System optimization and adsorption quantification.
    Vo PHN; Nguyen TTP; Nguyen HTM; Baulch J; Dong S; Nguyen CV; Thai PK; Nguyen AV
    Water Res; 2024 Apr; 253():121300. PubMed ID: 38367385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Interfacial Tension and Adsorption at Fluid-Fluid Interfaces for Mixtures of PFAS and/or Hydrocarbon Surfactants.
    Guo B; Saleem H; Brusseau ML
    Environ Sci Technol; 2023 May; 57(21):8044-8052. PubMed ID: 37204869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PFAS concentrations in soil versus soil porewater: Mass distributions and the impact of adsorption at air-water interfaces.
    Brusseau ML; Guo B
    Chemosphere; 2022 Sep; 302():134938. PubMed ID: 35568214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comprehensive retention model for PFAS transport in subsurface systems.
    Brusseau ML; Yan N; Van Glubt S; Wang Y; Chen W; Lyu Y; Dungan B; Carroll KC; Holguin FO
    Water Res; 2019 Jan; 148():41-50. PubMed ID: 30343197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of molecular structure on PFAS adsorption at air-water interfaces in electrolyte solutions.
    Brusseau ML; Van Glubt S
    Chemosphere; 2021 Oct; 281():130829. PubMed ID: 33992851
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of poly- and perfluoroalkyl substances (PFAS) in the surface microlayer and foam in synthetic and natural waters.
    Schaefer CE; Lemes MCS; Schwichtenberg T; Field JA
    J Hazard Mater; 2022 Oct; 440():129782. PubMed ID: 35988483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSPR-based prediction of air-water interfacial adsorption coefficients for nonionic PFAS with large headgroups.
    Brusseau ML
    Chemosphere; 2023 Nov; 340():139960. PubMed ID: 37633613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic model of PFAS removal by semi-batch foam fractionation and validation by experimental data for K-PFOS.
    Wang J; Niven RK; Morrison A; Wilson SP; Strezov V; Taylor MP
    Sci Total Environ; 2023 Mar; 865():161145. PubMed ID: 36572310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of air-water interface in removing PFAS from drinking water: Adsorption, stability, interaction and machine learning studies.
    Yuan S; Wang X; Jiang Z; Zhang H; Yuan S
    Water Res; 2023 Jun; 236():119947. PubMed ID: 37084575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating PFAS transport influenced by rate-limited multi-process retention.
    Brusseau ML
    Water Res; 2020 Jan; 168():115179. PubMed ID: 31639593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contribution of Nonaqueous-Phase Liquids to the Retention and Transport of Per and Polyfluoroalkyl Substances (PFAS) in Porous Media.
    Van Glubt S; Brusseau ML
    Environ Sci Technol; 2021 Mar; 55(6):3706-3715. PubMed ID: 33666425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of methods to estimate air-water interfacial areas for evaluating PFAS transport in the vadose zone.
    Silva JAK; Šimůnek J; McCray JE
    J Contam Hydrol; 2022 May; 247():103984. PubMed ID: 35279485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fundamental model for calculating interfacial adsorption of complex ionic and nonionic PFAS mixtures in the presence of mixed salts.
    Gao Y; Le ST; Kibbey TCG; Glamore W; O'Carroll DM
    Environ Sci Process Impacts; 2023 Nov; 25(11):1830-1838. PubMed ID: 36987664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drinking water nanofiltration with concentrate foam fractionation-A novel approach for removal of per- and polyfluoroalkyl substances (PFAS).
    McCleaf P; Stefansson W; Ahrens L
    Water Res; 2023 Apr; 232():119688. PubMed ID: 36764110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retention of PFOS and PFOA Mixtures by Trapped Gas Bubbles in Porous Media.
    Abraham JEF; Mumford KG; Patch DJ; Weber KP
    Environ Sci Technol; 2022 Nov; 56(22):15489-15498. PubMed ID: 36279175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting the impact of salt mixtures on the air-water interfacial behavior of PFAS.
    Le ST; Gao Y; Kibbey TCG; Glamore WC; O'Carroll DM
    Sci Total Environ; 2022 May; 819():151987. PubMed ID: 34843785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.