BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37541213)

  • 21. YAP1 and TAZ Control Pancreatic Cancer Initiation in Mice by Direct Up-regulation of JAK-STAT3 Signaling.
    Gruber R; Panayiotou R; Nye E; Spencer-Dene B; Stamp G; Behrens A
    Gastroenterology; 2016 Sep; 151(3):526-39. PubMed ID: 27215660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice.
    Habbe N; Shi G; Meguid RA; Fendrich V; Esni F; Chen H; Feldmann G; Stoffers DA; Konieczny SF; Leach SD; Maitra A
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18913-8. PubMed ID: 19028870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Loss of Setd2 promotes Kras-induced acinar-to-ductal metaplasia and epithelia-mesenchymal transition during pancreatic carcinogenesis.
    Niu N; Lu P; Yang Y; He R; Zhang L; Shi J; Wu J; Yang M; Zhang ZG; Wang LW; Gao WQ; Habtezion A; Xiao GG; Sun Y; Li L; Xue J
    Gut; 2020 Apr; 69(4):715-726. PubMed ID: 31300513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acinar cell clonal expansion in pancreas homeostasis and carcinogenesis.
    Neuhöfer P; Roake CM; Kim SJ; Lu RJ; West RB; Charville GW; Artandi SE
    Nature; 2021 Sep; 597(7878):715-719. PubMed ID: 34526722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aldh1b1 expression defines progenitor cells in the adult pancreas and is required for Kras-induced pancreatic cancer.
    Mameishvili E; Serafimidis I; Iwaszkiewicz S; Lesche M; Reinhardt S; Bölicke N; Büttner M; Stellas D; Papadimitropoulou A; Szabolcs M; Anastassiadis K; Dahl A; Theis F; Efstratiadis A; Gavalas A
    Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20679-20688. PubMed ID: 31548432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ductal obstruction promotes formation of preneoplastic lesions from the pancreatic ductal compartment.
    Cheng T; Zhang Z; Jian Z; Raulefs S; Schlitter AM; Steiger K; Maeritz N; Zhao Y; Shen S; Zou X; Ceyhan GO; Friess H; Kleeff J; Michalski CW; Kong B
    Int J Cancer; 2019 May; 144(10):2529-2538. PubMed ID: 30412288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. HNF1A recruits KDM6A to activate differentiated acinar cell programs that suppress pancreatic cancer.
    Kalisz M; Bernardo E; Beucher A; Maestro MA; Del Pozo N; Millán I; Haeberle L; Schlensog M; Safi SA; Knoefel WT; Grau V; de Vas M; Shpargel KB; Vaquero E; Magnuson T; Ortega S; Esposito I; Real FX; Ferrer J
    EMBO J; 2020 May; 39(9):e102808. PubMed ID: 32154941
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids.
    Huang L; Desai R; Conrad DN; Leite NC; Akshinthala D; Lim CM; Gonzalez R; Muthuswamy LB; Gartner Z; Muthuswamy SK
    Cell Stem Cell; 2021 Jun; 28(6):1090-1104.e6. PubMed ID: 33915081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Docking Protein p130Cas Regulates Acinar to Ductal Metaplasia During Pancreatic Adenocarcinoma Development and Pancreatitis.
    Costamagna A; Natalini D; Camacho Leal MDP; Simoni M; Gozzelino L; Cappello P; Novelli F; Ambrogio C; Defilippi P; Turco E; Giovannetti E; Hirsch E; Cabodi S; Martini M
    Gastroenterology; 2022 Apr; 162(4):1242-1255.e11. PubMed ID: 34922945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Induced PTF1a expression in pancreatic ductal adenocarcinoma cells activates acinar gene networks, reduces tumorigenic properties, and sensitizes cells to gemcitabine treatment.
    Jakubison BL; Schweickert PG; Moser SE; Yang Y; Gao H; Scully K; Itkin-Ansari P; Liu Y; Konieczny SF
    Mol Oncol; 2018 Jun; 12(7):1104-1124. PubMed ID: 29719936
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ARID1A, a SWI/SNF subunit, is critical to acinar cell homeostasis and regeneration and is a barrier to transformation and epithelial-mesenchymal transition in the pancreas.
    Wang W; Friedland SC; Guo B; O'Dell MR; Alexander WB; Whitney-Miller CL; Agostini-Vulaj D; Huber AR; Myers JR; Ashton JM; Dunne RF; Steiner LA; Hezel AF
    Gut; 2019 Jul; 68(7):1245-1258. PubMed ID: 30228219
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a novel IL-5 signaling pathway in chronic pancreatitis and crosstalk with pancreatic tumor cells.
    Gitto SB; Beardsley JM; Nakkina SP; Oyer JL; Cline KA; Litherland SA; Copik AJ; Khaled AS; Fanaian N; Arnoletti JP; Altomare DA
    Cell Commun Signal; 2020 Jun; 18(1):95. PubMed ID: 32552827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Important role of Nfkb2 in the Kras
    Hassan Z; Schneeweis C; Wirth M; Müller S; Geismann C; Neuß T; Steiger K; Krämer OH; Schmid RM; Rad R; Arlt A; Reichert M; Saur D; Schneider G
    Pancreatology; 2021 Aug; 21(5):912-919. PubMed ID: 33824054
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.
    Wauters E; Sanchez-Arévalo Lobo VJ; Pinho AV; Mawson A; Herranz D; Wu J; Cowley MJ; Colvin EK; Njicop EN; Sutherland RL; Liu T; Serrano M; Bouwens L; Real FX; Biankin AV; Rooman I
    Cancer Res; 2013 Apr; 73(7):2357-67. PubMed ID: 23370328
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of protein kinase Cδ leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1.
    Johnson CL; Peat JM; Volante SN; Wang R; McLean CA; Pin CL
    J Pathol; 2012 Nov; 228(3):351-65. PubMed ID: 22374815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Expression of the EWSR1-FLI1 fusion oncogene in pancreas cells drives pancreatic atrophy and lipomatosis.
    Fahr L; Sunami Y; Maeritz N; Steiger K; Grünewald TGP; Gericke M; Kong B; Raulefs S; Mayerle J; Michalski CW; Regel I; Kleeff J
    Pancreatology; 2020 Dec; 20(8):1673-1681. PubMed ID: 33051146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. c-Myc downregulation is required for preacinar to acinar maturation and pancreatic homeostasis.
    Sánchez-Arévalo Lobo VJ; Fernández LC; Carrillo-de-Santa-Pau E; Richart L; Cobo I; Cendrowski J; Moreno U; Del Pozo N; Megías D; Bréant B; Wright CV; Magnuson M; Real FX
    Gut; 2018 Apr; 67(4):707-718. PubMed ID: 28159836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PRDM3 attenuates pancreatitis and pancreatic tumorigenesis by regulating inflammatory response.
    Ye J; Huang A; Wang H; Zhang AMY; Huang X; Lan Q; Sato T; Goyama S; Kurokawa M; Deng C; Sander M; Schaeffer DF; Li W; Kopp JL; Xie R
    Cell Death Dis; 2020 Mar; 11(3):187. PubMed ID: 32179733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oncogenic KRas-induced Increase in Fluid-phase Endocytosis is Dependent on N-WASP and is Required for the Formation of Pancreatic Preneoplastic Lesions.
    Lubeseder-Martellato C; Alexandrow K; Hidalgo-Sastre A; Heid I; Boos SL; Briel T; Schmid RM; Siveke JT
    EBioMedicine; 2017 Feb; 15():90-99. PubMed ID: 28057438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.