These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37541434)

  • 41. Wrinkle-assisted linear assembly of hard-core/soft-shell particles: impact of the soft shell on the local structure.
    Müller M; Karg M; Fortini A; Hellweg T; Fery A
    Nanoscale; 2012 Apr; 4(7):2491-9. PubMed ID: 22395669
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Combining Soft Polysilazanes with Melt-Shear Organization of Core-Shell Particles: On the Road to Polymer-Templated Porous Ceramics.
    Boehm AK; Ionescu E; Koch M; Gallei M
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31575046
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interfacial Colloidal Self-Assembly for Functional Materials.
    Hou S; Bai L; Lu D; Duan H
    Acc Chem Res; 2023 Apr; 56(7):740-751. PubMed ID: 36920352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pattern formation in two-dimensional hard-core/soft-shell systems with variable soft shell profiles.
    Somerville WRC; Law AD; Rey M; Vogel N; Archer AJ; Buzza DMA
    Soft Matter; 2020 Apr; 16(14):3564-3573. PubMed ID: 32222744
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soft Colloidal Particles at Fluid Interfaces.
    Guzmán E; Maestro A
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335463
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review.
    Ji X; Wang X; Zhang Y; Zang D
    Rep Prog Phys; 2020 Dec; 83(12):126601. PubMed ID: 32998118
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of architecture on the interaction of negatively charged multisensitive poly(N-isopropylacrylamide)-co-methacrylic acid microgels with oppositely charged polyelectrolyte: absorption vs adsorption.
    Kleinen J; Klee A; Richtering W
    Langmuir; 2010 Jul; 26(13):11258-65. PubMed ID: 20377221
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dynamic and viscoelastic interfacial behavior of β-lactoglobulin microgels of varying sizes at fluid interfaces.
    Murphy RW; Farkas BE; Jones OG
    J Colloid Interface Sci; 2016 Mar; 466():12-9. PubMed ID: 26701187
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interfacial arrangement and phase transitions of PNiPAm microgels with different crosslinking densities.
    Rey M; Hou X; Tang JSJ; Vogel N
    Soft Matter; 2017 Nov; 13(46):8717-8727. PubMed ID: 29119191
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of polymer-silica nanocomposite particles with core-shell morphologies using Monte Carlo simulations and small angle X-ray scattering.
    Balmer JA; Mykhaylyk OO; Schmid A; Armes SP; Fairclough JP; Ryan AJ
    Langmuir; 2011 Jul; 27(13):8075-89. PubMed ID: 21661736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct visualization of the interfacial position of colloidal particles and their assemblies.
    Vogel N; Ally J; Bley K; Kappl M; Landfester K; Weiss CK
    Nanoscale; 2014 Jun; 6(12):6879-85. PubMed ID: 24830445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Triangular lattice models for pattern formation by core-shell particles with different shell thicknesses.
    Grishina VS; Vikhrenko VS; Ciach A
    J Phys Condens Matter; 2020 Jul; 32(40):. PubMed ID: 32498052
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elasticity of interfacial rafts of hard particles with soft shells.
    Knoche S; Kierfeld J
    Langmuir; 2015 May; 31(19):5364-76. PubMed ID: 25901364
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface Patterning with SiO
    Tang JSJ; Bader RS; Goerlitzer ESA; Wendisch JF; Bourret GR; Rey M; Vogel N
    ACS Omega; 2018 Sep; 3(9):12089-12098. PubMed ID: 30288467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Tuning Interfacial Properties and Processes by Controlling the Rheology and Structure of Poly( N-isopropylacrylamide) Particles at Air/Water Interfaces.
    Maestro A; Jones D; Sánchez de Rojas Candela C; Guzman E; Duits MHG; Cicuta P
    Langmuir; 2018 Jun; 34(24):7067-7076. PubMed ID: 29772184
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tuning the Swelling Properties of Smart Multiresponsive Core-Shell Microgels by Copolymerization.
    Brändel T; Dirksen M; Hellweg T
    Polymers (Basel); 2019 Jul; 11(8):. PubMed ID: 31370213
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling the Assembly of Polymer-Grafted Nanoparticles at Oil-Water Interfaces.
    Yong X
    Langmuir; 2015 Oct; 31(42):11458-69. PubMed ID: 26439456
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thermoresponsive core-shell microgels with silica nanoparticle cores: size, structure, and volume phase transition of the polymer shell.
    Karg M; Wellert S; Pastoriza-Santos I; Lapp A; Liz-Marzán LM; Hellweg T
    Phys Chem Chem Phys; 2008 Nov; 10(44):6708-16. PubMed ID: 18989484
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale Mechanical Properties of Core-Shell-like Poly-NIPAm Microgel Particles: Effect of Temperature and Cross-Linking Density.
    Li G; Varga I; Kardos A; Dobryden I; Claesson PM
    J Phys Chem B; 2021 Sep; 125(34):9860-9869. PubMed ID: 34428041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Core-shell particles in rotating electric and magnetic fields: Designing tunable interactions via particle engineering.
    Komarov KA; Mantsevich VN; Yurchenko SO
    J Chem Phys; 2021 Aug; 155(8):084903. PubMed ID: 34470364
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.