These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37541472)

  • 61. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers.
    Ensign LM; Cone R; Hanes J
    Adv Drug Deliv Rev; 2012 May; 64(6):557-70. PubMed ID: 22212900
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface.
    Peng D; Jin W; Li J; Xiong W; Pei Y; Wang Y; Li Y; Li B
    J Agric Food Chem; 2017 Mar; 65(11):2454-2460. PubMed ID: 28241119
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics.
    Chen CC; Tsai TH; Huang ZR; Fang JY
    Eur J Pharm Biopharm; 2010 Mar; 74(3):474-82. PubMed ID: 20060469
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fluorescence quenching study of resveratrol binding to zein and gliadin: Towards a more rational approach to resveratrol encapsulation using water-insoluble proteins.
    Joye IJ; Davidov-Pardo G; Ludescher RD; McClements DJ
    Food Chem; 2015 Oct; 185():261-7. PubMed ID: 25952867
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Cyclodextrin nanosystems in oral drug delivery: A mini review.
    Adeoye O; Cabral-Marques H
    Int J Pharm; 2017 Oct; 531(2):521-531. PubMed ID: 28455134
    [TBL] [Abstract][Full Text] [Related]  

  • 66. In-vitro and in-vivo binding activity of chicken egg yolk immunoglobulin Y (IgY) against gliadin in food matrix.
    Gujral N; Löbenberg R; Suresh M; Sunwoo H
    J Agric Food Chem; 2012 Mar; 60(12):3166-72. PubMed ID: 22400905
    [TBL] [Abstract][Full Text] [Related]  

  • 67. RoboCap: Robotic mucus-clearing capsule for enhanced drug delivery in the gastrointestinal tract.
    Srinivasan SS; Alshareef A; Hwang AV; Kang Z; Kuosmanen J; Ishida K; Jenkins J; Liu S; Madani WAM; Lennerz J; Hayward A; Morimoto J; Fitzgerald N; Langer R; Traverso G
    Sci Robot; 2022 Sep; 7(70):eabp9066. PubMed ID: 36170378
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-organization of gliadin in aqueous media under physiological digestive pHs.
    Herrera MG; Veuthey TV; Dodero VI
    Colloids Surf B Biointerfaces; 2016 May; 141():565-575. PubMed ID: 26897550
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Size-Dependent Phagocytic Uptake and Immunogenicity of Gliadin Nanoparticles.
    Alqahtani MS; Syed R; Alshehri M
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33147852
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Lipopolysaccharide Nanosystems for the Enhancement of Oral Bioavailability.
    Sumaila M; Marimuthu T; Kumar P; Choonara YE
    AAPS PharmSciTech; 2021 Sep; 22(7):242. PubMed ID: 34595578
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures.
    Akbari A; Lavasanifar A; Wu J
    Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The cultivable human oral gluten-degrading microbiome and its potential implications in coeliac disease and gluten sensitivity.
    Fernandez-Feo M; Wei G; Blumenkranz G; Dewhirst FE; Schuppan D; Oppenheim FG; Helmerhorst EJ
    Clin Microbiol Infect; 2013 Sep; 19(9):E386-94. PubMed ID: 23714165
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Toxicity evaluation of nanocarriers for the oral delivery of macromolecular drugs.
    Ojer P; Iglesias T; Azqueta A; Irache JM; López de Cerain A
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):206-17. PubMed ID: 26493712
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Chitosan/PLGA particles for controlled release of α-tocopherol in the GI tract via oral administration.
    Murugeshu A; Astete C; Leonardi C; Morgan T; Sabliov CM
    Nanomedicine (Lond); 2011 Nov; 6(9):1513-28. PubMed ID: 21707297
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Optimization and evaluation of zein nanoparticles to improve the oral delivery of glibenclamide. In vivo study using C. elegans.
    Lucio D; Martínez-Ohárriz MC; Jaras G; Aranaz P; González-Navarro CJ; Radulescu A; Irache JM
    Eur J Pharm Biopharm; 2017 Dec; 121():104-112. PubMed ID: 28986295
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Size and surface charge of gold nanoparticles determine absorption across intestinal barriers and accumulation in secondary target organs after oral administration.
    Schleh C; Semmler-Behnke M; Lipka J; Wenk A; Hirn S; Schäffler M; Schmid G; Simon U; Kreyling WG
    Nanotoxicology; 2012 Feb; 6(1):36-46. PubMed ID: 21309618
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Microworms swallow the nanobait: the use of nanocoated microbial cells for the direct delivery of nanoparticles into Caenorhabditis elegans.
    Däwlätşina GI; Minullina RT; Fakhrullin RF
    Nanoscale; 2013 Dec; 5(23):11761-9. PubMed ID: 24121899
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Systematic evaluation of the toxicity and biodistribution of virus mimicking mucus-penetrating DLPC-NPs as oral drug delivery system.
    Shan W; Cui Y; Liu M; Wu L; Xiang Y; Guo Q; Zhang Z; Huang Y
    Int J Pharm; 2017 Sep; 530(1-2):89-98. PubMed ID: 28743553
    [TBL] [Abstract][Full Text] [Related]  

  • 79.
    Mandiwana V; Kalombo L; Grobler A; Zeevaart JR
    Appl Radiat Isot; 2018 Nov; 141():51-56. PubMed ID: 30170270
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Intestinal absorption of the wheat allergen gliadin in rats.
    Yokooji T; Fukushima T; Hamura K; Ninomiya N; Ohashi R; Taogoshi T; Matsuo H
    Allergol Int; 2019 Apr; 68(2):247-253. PubMed ID: 30559050
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.