BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 37542002)

  • 1. BI 1291583: a novel selective inhibitor of cathepsin C with superior in vivo profile for the treatment of bronchiectasis.
    Kreideweiss S; Schänzle G; Schnapp G; Vintonyak V; Grundl MA
    Inflamm Res; 2023 Aug; 72(8):1709-1717. PubMed ID: 37542002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prolonged pharmacological inhibition of cathepsin C results in elimination of neutrophil serine proteases.
    Guarino C; Hamon Y; Croix C; Lamort AS; Dallet-Choisy S; Marchand-Adam S; Lesner A; Baranek T; Viaud-Massuard MC; Lauritzen C; Pedersen J; Heuzé-Vourc'h N; Si-Tahar M; Fıratlı E; Jenne DE; Gauthier F; Horwitz MS; Borregaard N; Korkmaz B
    Biochem Pharmacol; 2017 May; 131():52-67. PubMed ID: 28193451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cathepsin C inhibition as a potential treatment strategy in cancer.
    Korkmaz B; Lamort AS; Domain R; Beauvillain C; Gieldon A; Yildirim AÖ; Stathopoulos GT; Rhimi M; Jenne DE; Kettritz R
    Biochem Pharmacol; 2021 Dec; 194():114803. PubMed ID: 34678221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pharmacokinetic profile of brensocatib and its effect on pharmacodynamic biomarkers including NE, PR3, and CatG in various rodent species.
    Basso J; Chen KJ; Zhou Y; Mark L; LaSala D; Dorfman A; Atalla M; Chun D; Viramontes V; Chang C; Leifer F; McDonald PP; Cipolla DC
    Front Pharmacol; 2023; 14():1208780. PubMed ID: 37538173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Premedication with a cathepsin C inhibitor alleviates early primary graft dysfunction in mouse recipients after lung transplantation.
    Rehm SRT; Smirnova NF; Morrone C; Götzfried J; Feuchtinger A; Pedersen J; Korkmaz B; Yildirim AÖ; Jenne DE
    Sci Rep; 2019 Jul; 9(1):9925. PubMed ID: 31289357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Cathepsin C in PR3-ANCA Vasculitis.
    Jerke U; Eulenberg-Gustavus C; Rousselle A; Nicklin P; Kreideweiss S; Grundl MA; Eickholz P; Nickles K; Schreiber A; Korkmaz B; Kettritz R
    J Am Soc Nephrol; 2022 May; 33(5):936-947. PubMed ID: 35292437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Consequences of cathepsin C inactivation for membrane exposure of proteinase 3, the target antigen in autoimmune vasculitis.
    Seren S; Rashed Abouzaid M; Eulenberg-Gustavus C; Hirschfeld J; Nasr Soliman H; Jerke U; N'Guessan K; Dallet-Choisy S; Lesner A; Lauritzen C; Schacher B; Eickholz P; Nagy N; Szell M; Croix C; Viaud-Massuard MC; Al Farraj Aldosari A; Ragunatha S; Ibrahim Mostafa M; Giampieri F; Battino M; Cornillier H; Lorette G; Stephan JL; Goizet C; Pedersen J; Gauthier F; Jenne DE; Marchand-Adam S; Chapple IL; Kettritz R; Korkmaz B
    J Biol Chem; 2018 Aug; 293(32):12415-12428. PubMed ID: 29925593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dipeptidyl peptidase-1 inhibition with brensocatib reduces the activity of all major neutrophil serine proteases in patients with bronchiectasis: results from the WILLOW trial.
    Cipolla D; Zhang J; Korkmaz B; Chalmers JD; Basso J; Lasala D; Fernandez C; Teper A; Mange KC; Perkins WR; Sullivan EJ
    Respir Res; 2023 May; 24(1):133. PubMed ID: 37198686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological inhibition of the cysteine protease cathepsin C improves graft function after heart transplantation in rats.
    Liu B; Korkmaz B; Kraft P; Mayer T; Sayour AA; Grundl MA; Domain R; Karck M; Szabó G; Korkmaz-Icöz S
    J Transl Med; 2023 Nov; 21(1):799. PubMed ID: 37946197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung Protection by Cathepsin C Inhibition: A New Hope for COVID-19 and ARDS?
    Korkmaz B; Lesner A; Marchand-Adam S; Moss C; Jenne DE
    J Med Chem; 2020 Nov; 63(22):13258-13265. PubMed ID: 32692176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic targeting of cathepsin C: from pathophysiology to treatment.
    Korkmaz B; Caughey GH; Chapple I; Gauthier F; Hirschfeld J; Jenne DE; Kettritz R; Lalmanach G; Lamort AS; Lauritzen C; Łȩgowska M; Lesner A; Marchand-Adam S; McKaig SJ; Moss C; Pedersen J; Roberts H; Schreiber A; Seren S; Thakker NS
    Pharmacol Ther; 2018 Oct; 190():202-236. PubMed ID: 29842917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neutrophilic Cathepsin C Is Maturated by a Multistep Proteolytic Process and Secreted by Activated Cells during Inflammatory Lung Diseases.
    Hamon Y; Legowska M; Hervé V; Dallet-Choisy S; Marchand-Adam S; Vanderlynden L; Demonte M; Williams R; Scott CJ; Si-Tahar M; Heuzé-Vourc'h N; Lalmanach G; Jenne DE; Lesner A; Gauthier F; Korkmaz B
    J Biol Chem; 2016 Apr; 291(16):8486-99. PubMed ID: 26884336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protease-Antiprotease Imbalance in Bronchiectasis.
    Oriano M; Amati F; Gramegna A; De Soyza A; Mantero M; Sibila O; Chotirmall SH; Voza A; Marchisio P; Blasi F; Aliberti S
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34206113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-based design and in vivo anti-arthritic activity evaluation of a potent dipeptidyl cyclopropyl nitrile inhibitor of cathepsin C.
    Korkmaz B; Lesner A; Wysocka M; Gieldon A; Håkansson M; Gauthier F; Logan DT; Jenne DE; Lauritzen C; Pedersen J
    Biochem Pharmacol; 2019 Jun; 164():349-367. PubMed ID: 30978322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of neutrophil dysfunction: neutrophil serine proteases cleave and inactivate the C5a receptor.
    van den Berg CW; Tambourgi DV; Clark HW; Hoong SJ; Spiller OB; McGreal EP
    J Immunol; 2014 Feb; 192(4):1787-95. PubMed ID: 24446515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dipeptidyl Peptidase 1 Inhibitor AZD7986 Induces a Sustained, Exposure-Dependent Reduction in Neutrophil Elastase Activity in Healthy Subjects.
    Palmér R; Mäenpää J; Jauhiainen A; Larsson B; Mo J; Russell M; Root J; Prothon S; Chialda L; Forte P; Egelrud T; Stenvall K; Gardiner P
    Clin Pharmacol Ther; 2018 Dec; 104(6):1155-1164. PubMed ID: 29484635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the activation of multiple serine proteases with a cathepsin C inhibitor requires sustained exposure to prevent pro-enzyme processing.
    Méthot N; Rubin J; Guay D; Beaulieu C; Ethier D; Reddy TJ; Riendeau D; Percival MD
    J Biol Chem; 2007 Jul; 282(29):20836-46. PubMed ID: 17535802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil maturation rate determines the effects of dipeptidyl peptidase 1 inhibition on neutrophil serine protease activity.
    Gardiner P; Wikell C; Clifton S; Shearer J; Benjamin A; Peters SA
    Br J Pharmacol; 2016 Aug; 173(15):2390-401. PubMed ID: 27186823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo inhibition of serine protease processing requires a high fractional inhibition of cathepsin C.
    Méthot N; Guay D; Rubin J; Ethier D; Ortega K; Wong S; Normandin D; Beaulieu C; Reddy TJ; Riendeau D; Percival MD
    Mol Pharmacol; 2008 Jun; 73(6):1857-65. PubMed ID: 18326050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dipeptidyl peptidase 1 inhibition as a potential therapeutic approach in neutrophil-mediated inflammatory disease.
    Chalmers JD; Kettritz R; Korkmaz B
    Front Immunol; 2023; 14():1239151. PubMed ID: 38162644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.