These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 37542037)
1. Targeting of SLC25A22 boosts the immunotherapeutic response in KRAS-mutant colorectal cancer. Zhou Q; Peng Y; Ji F; Chen H; Kang W; Chan LS; Gou H; Lin Y; Huang P; Chen D; Wei Q; Su H; Liang C; Zhang X; Yu J; Wong CC Nat Commun; 2023 Aug; 14(1):4677. PubMed ID: 37542037 [TBL] [Abstract][Full Text] [Related]
2. SLC25A22 Promotes Proliferation and Survival of Colorectal Cancer Cells With KRAS Mutations and Xenograft Tumor Progression in Mice via Intracellular Synthesis of Aspartate. Wong CC; Qian Y; Li X; Xu J; Kang W; Tong JH; To KF; Jin Y; Li W; Chen H; Go MY; Wu JL; Cheng KW; Ng SS; Sung JJ; Cai Z; Yu J Gastroenterology; 2016 Nov; 151(5):945-960.e6. PubMed ID: 27451147 [TBL] [Abstract][Full Text] [Related]
3. In Colorectal Cancer Cells With Mutant KRAS, SLC25A22-Mediated Glutaminolysis Reduces DNA Demethylation to Increase WNT Signaling, Stemness, and Drug Resistance. Wong CC; Xu J; Bian X; Wu JL; Kang W; Qian Y; Li W; Chen H; Gou H; Liu D; Yat Luk ST; Zhou Q; Ji F; Chan LS; Shirasawa S; Sung JJ; Yu J Gastroenterology; 2020 Dec; 159(6):2163-2180.e6. PubMed ID: 32814111 [TBL] [Abstract][Full Text] [Related]
4. METTL3 Inhibits Antitumor Immunity by Targeting m Chen H; Pan Y; Zhou Q; Liang C; Wong CC; Zhou Y; Huang D; Liu W; Zhai J; Gou H; Su H; Zhang X; Xu H; Wang Y; Kang W; Kei Wu WK; Yu J Gastroenterology; 2022 Oct; 163(4):891-907. PubMed ID: 35700773 [TBL] [Abstract][Full Text] [Related]
5. KRAS-IRF2 Axis Drives Immune Suppression and Immune Therapy Resistance in Colorectal Cancer. Liao W; Overman MJ; Boutin AT; Shang X; Zhao D; Dey P; Li J; Wang G; Lan Z; Li J; Tang M; Jiang S; Ma X; Chen P; Katkhuda R; Korphaisarn K; Chakravarti D; Chang A; Spring DJ; Chang Q; Zhang J; Maru DM; Maeda DY; Zebala JA; Kopetz S; Wang YA; DePinho RA Cancer Cell; 2019 Apr; 35(4):559-572.e7. PubMed ID: 30905761 [TBL] [Abstract][Full Text] [Related]
6. Dual blockade of macropinocytosis and asparagine bioavailability shows synergistic anti-tumor effects on KRAS-mutant colorectal cancer. Hanada K; Kawada K; Nishikawa G; Toda K; Maekawa H; Nishikawa Y; Masui H; Hirata W; Okamoto M; Kiyasu Y; Honma S; Ogawa R; Mizuno R; Itatani Y; Miyoshi H; Sasazuki T; Shirasawa S; Taketo MM; Obama K; Sakai Y Cancer Lett; 2021 Dec; 522():129-141. PubMed ID: 34543685 [TBL] [Abstract][Full Text] [Related]
7. 4-Acetyl-Antroquinonol B Improves the Sensitization of Cetuximab on Both Kras Mutant and Wild Type Colorectal Cancer by Modulating the Expression of Ras/Raf/miR-193a-3p Signaling Axis. Chu YC; Tsai TY; Yadav VK; Deng L; Huang CC; Tzeng YM; Yeh CT; Chen MY Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299137 [TBL] [Abstract][Full Text] [Related]
8. LC-MS-based metabolomics revealed SLC25A22 as an essential regulator of aspartate-derived amino acids and polyamines in Li X; Chung ACK; Li S; Wu L; Xu J; Yu J; Wong C; Cai Z Oncotarget; 2017 Nov; 8(60):101333-101344. PubMed ID: 29254168 [TBL] [Abstract][Full Text] [Related]
9. Mutant KRAS Drives Immune Evasion by Sensitizing Cytotoxic T-Cells to Activation-Induced Cell Death in Colorectal Cancer. Liu H; Liang Z; Cheng S; Huang L; Li W; Zhou C; Zheng X; Li S; Zeng Z; Kang L Adv Sci (Weinh); 2023 Feb; 10(6):e2203757. PubMed ID: 36599679 [TBL] [Abstract][Full Text] [Related]
10. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Zhai J; Chen H; Wong CC; Peng Y; Gou H; Zhang J; Pan Y; Chen D; Lin Y; Wang S; Kang W; To KF; Chen Z; Nie Y; He HH; Sung JJ; Yu J Gastroenterology; 2023 Aug; 165(2):445-462. PubMed ID: 37169182 [TBL] [Abstract][Full Text] [Related]
11. Targeting m Bao Y; Zhai J; Chen H; Wong CC; Liang C; Ding Y; Huang D; Gou H; Chen D; Pan Y; Kang W; To KF; Yu J Gut; 2023 Aug; 72(8):1497-1509. PubMed ID: 36717220 [TBL] [Abstract][Full Text] [Related]
12. Combinative treatment of β-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Chen P; Li X; Zhang R; Liu S; Xiang Y; Zhang M; Chen X; Pan T; Yan L; Feng J; Duan T; Wang D; Chen B; Jin T; Wang W; Chen L; Huang X; Zhang W; Sun Y; Li G; Kong L; Chen X; Li Y; Yang Z; Zhang Q; Zhuo L; Sui X; Xie T Theranostics; 2020; 10(11):5107-5119. PubMed ID: 32308771 [No Abstract] [Full Text] [Related]
13. DKK2 blockage-mediated immunotherapy enhances anti-angiogenic therapy of Kras mutated colorectal cancer. Hu J; Wang Z; Chen Z; Li A; Sun J; Zheng M; Wu J; Shen T; Qiao J; Li L; Li B; Wu D; Xiao Q Biomed Pharmacother; 2020 Jul; 127():110229. PubMed ID: 32559853 [TBL] [Abstract][Full Text] [Related]
14. Dasatinib sensitizes KRAS mutant colorectal tumors to cetuximab. Dunn EF; Iida M; Myers RA; Campbell DA; Hintz KA; Armstrong EA; Li C; Wheeler DL Oncogene; 2011 Feb; 30(5):561-74. PubMed ID: 20956938 [TBL] [Abstract][Full Text] [Related]
15. NG25, a novel inhibitor of TAK1, suppresses KRAS-mutant colorectal cancer growth in vitro and in vivo. Ma Q; Gu L; Liao S; Zheng Y; Zhang S; Cao Y; Zhang J; Wang Y Apoptosis; 2019 Feb; 24(1-2):83-94. PubMed ID: 30515612 [TBL] [Abstract][Full Text] [Related]
16. SLC25A21 downregulation promotes KRAS-mutant colorectal cancer progression by increasing glutamine anaplerosis. Hu SS; Han Y; Tan TY; Chen H; Gao JW; Wang L; Yang MH; Zhao L; Wang YQ; Ding YQ; Wang S JCI Insight; 2023 Nov; 8(21):. PubMed ID: 37937641 [TBL] [Abstract][Full Text] [Related]
17. Metabolic Alterations Caused by KRAS Mutations in Colorectal Cancer Contribute to Cell Adaptation to Glutamine Depletion by Upregulation of Asparagine Synthetase. Toda K; Kawada K; Iwamoto M; Inamoto S; Sasazuki T; Shirasawa S; Hasegawa S; Sakai Y Neoplasia; 2016 Nov; 18(11):654-665. PubMed ID: 27764698 [TBL] [Abstract][Full Text] [Related]
18. The cholesterol uptake regulator PCSK9 promotes and is a therapeutic target in APC/KRAS-mutant colorectal cancer. Wong CC; Wu JL; Ji F; Kang W; Bian X; Chen H; Chan LS; Luk STY; Tong S; Xu J; Zhou Q; Liu D; Su H; Gou H; Cheung AH; To KF; Cai Z; Shay JW; Yu J Nat Commun; 2022 Jul; 13(1):3971. PubMed ID: 35803966 [TBL] [Abstract][Full Text] [Related]
19. Treg-dependent immunosuppression triggers effector T cell dysfunction via the STING/ILC2 axis. Domvri K; Petanidis S; Zarogoulidis P; Anestakis D; Tsavlis D; Bai C; Huang H; Freitag L; Hohenforst-Schmidt W; Porpodis K; Katopodi T Clin Immunol; 2021 Jan; 222():108620. PubMed ID: 33176208 [TBL] [Abstract][Full Text] [Related]
20. Targeting the ERβ/HER Oncogenic Network in Almotlak AA; Farooqui M; Soloff AC; Siegfried JM; Stabile LP Int J Mol Sci; 2021 Dec; 23(1):. PubMed ID: 35008514 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]