BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37542919)

  • 21. Translation of Circular RNAs: Functions of Translated Products and Related Bioinformatics Approaches.
    Hwang JY; Kook TL; Paulus SM; Park JW
    Curr Bioinform; 2024; 19(1):3-13. PubMed ID: 38500957
    [TBL] [Abstract][Full Text] [Related]  

  • 22. IRES-dependent translated genes in fungi: computational prediction, phylogenetic conservation and functional association.
    Peguero-Sanchez E; Pardo-Lopez L; Merino E
    BMC Genomics; 2015 Dec; 16():1059. PubMed ID: 26666532
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human IRES Atlas: an integrative platform for studying IRES-driven translational regulation in humans.
    Yang TH; Wang CY; Tsai HC; Liu CT
    Database (Oxford); 2021 May; 2021():. PubMed ID: 33942874
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Circular RNA, the Key for Translation.
    Prats AC; David F; Diallo LH; Roussel E; Tatin F; Garmy-Susini B; Lacazette E
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advances and Breakthroughs in IRES-Directed Translation and Replication of Picornaviruses.
    Abdullah SW; Wu J; Wang X; Guo H; Sun S
    mBio; 2023 Apr; 14(2):e0035823. PubMed ID: 36939331
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Hinge Region of the Israeli Acute Paralysis Virus Internal Ribosome Entry Site Directs Ribosomal Positioning, Translational Activity, and Virus Infection.
    Kirby MP; Stevenson C; Worrall LJ; Chen Y; Young C; Youm J; Strynadka NCJ; Allan DW; Jan E
    J Virol; 2022 Mar; 96(5):e0133021. PubMed ID: 35019716
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deconstructing internal ribosome entry site elements: an update of structural motifs and functional divergences.
    Lozano G; Francisco-Velilla R; Martinez-Salas E
    Open Biol; 2018 Nov; 8(11):. PubMed ID: 30487301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The complexity of the translation ability of circRNAs.
    Granados-Riveron JT; Aquino-Jarquin G
    Biochim Biophys Acta; 2016 Oct; 1859(10):1245-51. PubMed ID: 27449861
    [TBL] [Abstract][Full Text] [Related]  

  • 29. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.
    Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites.
    Lasantha D; Vidanagamachchi S; Nallaperuma S
    Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nucleolin Promotes IRES-Driven Translation of Foot-and-Mouth Disease Virus by Supporting the Assembly of Translation Initiation Complexes.
    Han S; Wang X; Guan J; Wu J; Zhang Y; Li P; Liu Z; Abdullah SW; Zhang Z; Jin Y; Sun S; Guo H
    J Virol; 2021 Jun; 95(13):e0023821. PubMed ID: 33853964
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Newly discovered mechanisms that mediate tumorigenesis and tumour progression: circRNA-encoded proteins.
    Wu C; Wang S; Cao T; Huang T; Xu L; Wang J; Li Q; Wang Y; Qian L; Xu L; Xia Y; Huang X
    J Cell Mol Med; 2023 Jun; 27(12):1609-1620. PubMed ID: 37070530
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering highly efficient backsplicing and translation of synthetic circRNAs.
    Meganck RM; Liu J; Hale AE; Simon KE; Fanous MM; Vincent HA; Wilusz JE; Moorman NJ; Marzluff WF; Asokan A
    Mol Ther Nucleic Acids; 2021 Mar; 23():821-834. PubMed ID: 33614232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unlike for cellular mRNAs and other viral internal ribosome entry sites (IRESs), the eIF3 subunit e is not required for the translational activity of the HCV IRES.
    Panthu B; Denolly S; Faivre-Moskalenko C; Ohlmann T; Cosset FL; Jalinot P
    J Biol Chem; 2020 Feb; 295(7):1843-1856. PubMed ID: 31929110
    [TBL] [Abstract][Full Text] [Related]  

  • 35. IRESPred: Web Server for Prediction of Cellular and Viral Internal Ribosome Entry Site (IRES).
    Kolekar P; Pataskar A; Kulkarni-Kale U; Pal J; Kulkarni A
    Sci Rep; 2016 Jun; 6():27436. PubMed ID: 27264539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Translatable circRNAs and lncRNAs: Driving mechanisms and functions of their translation products.
    Kong S; Tao M; Shen X; Ju S
    Cancer Lett; 2020 Jul; 483():59-65. PubMed ID: 32360179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular architecture of the ribosome-bound Hepatitis C Virus internal ribosomal entry site RNA.
    Yamamoto H; Collier M; Loerke J; Ismer J; Schmidt A; Hilal T; Sprink T; Yamamoto K; Mielke T; Bürger J; Shaikh TR; Dabrowski M; Hildebrand PW; Scheerer P; Spahn CM
    EMBO J; 2015 Dec; 34(24):3042-58. PubMed ID: 26604301
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mutational Analysis of the Bovine Hepacivirus Internal Ribosome Entry Site.
    Baron AL; Schoeniger A; Becher P; Baechlein C
    J Virol; 2018 Aug; 92(15):. PubMed ID: 29769341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CircVIS: a platform for circRNA visual presentation.
    Lin YC; Wang YC; Lee YC; Lin HH; Chang KL; Tai YC; Hsiao KY
    BMC Genomics; 2022 Jun; 22(Suppl 5):921. PubMed ID: 35681126
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Constructing GFP-Based Reporter to Study Back Splicing and Translation of Circular RNA.
    Yang Y; Wang Z
    Methods Mol Biol; 2018; 1724():107-118. PubMed ID: 29322444
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.