These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 37543124)

  • 1. Activated sludge microbiome with H
    Oh S; Nguyen HT
    Environ Res; 2023 Nov; 236(Pt 2):116832. PubMed ID: 37543124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of oxytetracycline-degrading bacteria and its application in improving the removal performance of aerobic granular sludge.
    Li X; Zhao X; Chen Z; Shen J; Jiang F; Wang X; Kang J
    J Environ Manage; 2020 Oct; 272():111115. PubMed ID: 32738758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-thermal plasma activated peroxide and percarbonate for tetracycline and oxytetracycline degradation: Synergistic performance, degradation pathways, and toxicity evaluation.
    Kyere-Yeboah K; Qiao XC
    Chemosphere; 2023 Sep; 336():139246. PubMed ID: 37330069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rape Straw Supported FeS Nanoparticles with Encapsulated Structure as Peroxymonosulfate and Hydrogen Peroxide Activators for Enhanced Oxytetracycline Degradation.
    Wang G; Yang Y; Xu X; Zhang S; Yang Z; Cheng Z; Xian J; Li T; Pu Y; Zhou W; Xiang G; Pu Z
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar-assisted degradation of oxytetracycline by Achromobacter denitrificans and underlying mechanisms.
    Zhang S; Hou J; Zhang X; Cheng L; Hu W; Zhang Q
    Bioresour Technol; 2023 Nov; 387():129673. PubMed ID: 37579863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal mechanism of di-n-butyl phthalate and oxytetracycline from aqueous solutions by nano-manganese dioxide modified biochar.
    Gao M; Zhang Y; Gong X; Song Z; Guo Z
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7796-7807. PubMed ID: 29290063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of biochar addition on the fate of ciprofloxacin and its associated antibiotic tolerance in an activated sludge microbiome.
    Oh S; Kim Y; Choi D; Park JW; Noh JH; Chung SY; Maeng SK; Cha CJ
    Environ Pollut; 2022 Aug; 306():119407. PubMed ID: 35526648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochar Modified by Nano-manganese Dioxide as Adsorbent and Oxidant for Oxytetracycline.
    Feng L; Yuan G; Xiao L; Wei J; Bi D
    Bull Environ Contam Toxicol; 2021 Aug; 107(2):269-275. PubMed ID: 32100060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Significant role of UV and carbonate radical on the degradation of oxytetracycline in UV-AOPs: Kinetics and mechanism.
    Liu Y; He X; Duan X; Fu Y; Fatta-Kassinos D; Dionysiou DD
    Water Res; 2016 May; 95():195-204. PubMed ID: 27131094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe
    Qi W; Long J; Feng C; Feng Y; Cheng D; Liu Y; Xue J; Li Z
    Water Res; 2019 Sep; 160():361-370. PubMed ID: 31158618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment.
    Han CH; Park HD; Kim SB; Yargeau V; Choi JW; Lee SH; Park JA
    Water Res; 2020 Apr; 172():115514. PubMed ID: 31986402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macro, colloidal and nanobiochar for oxytetracycline removal in synthetic hydrolyzed human urine.
    Ramanayaka S; Kumar M; Etampawala T; Vithanage M
    Environ Pollut; 2020 Dec; 267():115683. PubMed ID: 33254678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two novel and efficient plant composites for the degradation of oxytetracycline: nanoscale ferrous sulphide supported on rape straw waste.
    Yang Y; Xu X; Zhang S; Wang G; Yang Z; Cheng Z; Xian J; Li T; Pu Y; Zhou W; Xiang G
    Environ Sci Pollut Res Int; 2022 Sep; 29(42):63545-63559. PubMed ID: 35461415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of oxytetracycline removal by aerobic granular sludge in SBR.
    Wang X; Shen J; Kang J; Zhao X; Chen Z
    Water Res; 2019 Sep; 161():308-318. PubMed ID: 31203036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient nanocomposite of Y
    Song J; Lu L; Wang J; Li X; Li J; Wang Q; Du H; Xin S; Xu L; Yan Q; Zhou C; Liu G; Xin Y
    Bioresour Technol; 2023 Oct; 385():129380. PubMed ID: 37356503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Oxytetracycline Removal by Coconut Shell Biochar Loaded with Nano-Zero-Valent Iron.
    Li Q; Zhao S; Wang Y
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of oxytetracycline on aerobic granular sludge process: Granulation, biological nutrient removal and microbial community structure.
    Nivedhita S; Shyni Jasmin P; Sarvajith M; Nancharaiah YV
    Chemosphere; 2022 Nov; 307(Pt 4):136103. PubMed ID: 35995202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochar enhanced the stability and microbial metabolic activity of aerobic denitrification system under long-term oxytetracycline stress.
    Mao Q; Bao J; Du J; He T; Zhang Y; Cheng B
    Bioresour Technol; 2023 Aug; 382():129188. PubMed ID: 37196743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical-enhanced Fe
    Jiang H; Qi Z; Wang Z
    Chemosphere; 2022 Dec; 308(Pt 1):136148. PubMed ID: 36049640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradation of oxytetracycline and electricity generation in microbial fuel cell with in situ dual graphene modified bioelectrode.
    Chen J; Hu Y; Huang W; Liu Y; Tang M; Zhang L; Sun J
    Bioresour Technol; 2018 Dec; 270():482-488. PubMed ID: 30245318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.