BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 37543278)

  • 1. A novel GRK3-HDAC2 regulatory pathway is a key direct link between neuroendocrine differentiation and angiogenesis in prostate cancer progression.
    Naderinezhad S; Zhang G; Wang Z; Zheng D; Hulsurkar M; Bakhoum M; Su N; Yang H; Shen T; Li W
    Cancer Lett; 2023 Sep; 571():216333. PubMed ID: 37543278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GRK3 is a direct target of CREB activation and regulates neuroendocrine differentiation of prostate cancer cells.
    Sang M; Hulsurkar M; Zhang X; Song H; Zheng D; Zhang Y; Li M; Xu J; Zhang S; Ittmann M; Li W
    Oncotarget; 2016 Jul; 7(29):45171-45185. PubMed ID: 27191986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Androgen deprivation promotes neuroendocrine differentiation and angiogenesis through CREB-EZH2-TSP1 pathway in prostate cancers.
    Zhang Y; Zheng D; Zhou T; Song H; Hulsurkar M; Su N; Liu Y; Wang Z; Shao L; Ittmann M; Gleave M; Han H; Xu F; Liao W; Wang H; Li W
    Nat Commun; 2018 Oct; 9(1):4080. PubMed ID: 30287808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular Links Between Angiogenesis and Neuroendocrine Phenotypes in Prostate Cancer Progression.
    Wang Z; Zhao Y; An Z; Li W
    Front Oncol; 2019; 9():1491. PubMed ID: 32039001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta-adrenergic signaling promotes tumor angiogenesis and prostate cancer progression through HDAC2-mediated suppression of thrombospondin-1.
    Hulsurkar M; Li Z; Zhang Y; Li X; Zheng D; Li W
    Oncogene; 2017 Mar; 36(11):1525-1536. PubMed ID: 27641328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MicroRNA-147b induces neuroendocrine differentiation of prostate cancer cells by targeting ribosomal protein RPS15A.
    Natani S; Ramakrishna M; Nallavolu T; Ummanni R
    Prostate; 2023 Jul; 83(10):936-949. PubMed ID: 37069746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST.
    Li W; Zheng D; Zhang Y; Yang S; Su N; Bakhoum M; Zhang G; Naderinezhad S; Mao Z; Wang Z; Zhou T
    Res Sq; 2023 Oct; ():. PubMed ID: 37886478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen deprivation induces neuroendocrine phenotypes in prostate cancer cells through CREB1/EZH2-mediated downregulation of REST.
    Zheng D; Zhang Y; Yang S; Su N; Bakhoum M; Zhang G; Naderinezhad S; Mao Z; Wang Z; Zhou T; Li W
    Cell Death Discov; 2024 May; 10(1):246. PubMed ID: 38777812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. REST reduction is essential for hypoxia-induced neuroendocrine differentiation of prostate cancer cells by activating autophagy signaling.
    Lin TP; Chang YT; Lee SY; Campbell M; Wang TC; Shen SH; Chung HJ; Chang YH; Chiu AW; Pan CC; Lin CH; Chu CY; Kung HJ; Cheng CY; Chang PC
    Oncotarget; 2016 May; 7(18):26137-51. PubMed ID: 27034167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer.
    Chen WY; Thuy Dung PV; Yeh HL; Chen WH; Jiang KC; Li HR; Chen ZQ; Hsiao M; Huang J; Wen YC; Liu YN
    Redox Biol; 2023 Jun; 62():102686. PubMed ID: 36963289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preclinical Models of Neuroendocrine Prostate Cancer.
    Cacciatore A; Albino D; Catapano CV; Carbone GM
    Curr Protoc; 2023 May; 3(5):e742. PubMed ID: 37166213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA Splicing of the BHC80 Gene Contributes to Neuroendocrine Prostate Cancer Progression.
    Li Y; Xie N; Chen R; Lee AR; Lovnicki J; Morrison EA; Fazli L; Zhang Q; Musselman CA; Wang Y; Huang J; Gleave ME; Collins C; Dong X
    Eur Urol; 2019 Aug; 76(2):157-166. PubMed ID: 30910347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer.
    Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A
    Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy pathway is required for IL-6 induced neuroendocrine differentiation and chemoresistance of prostate cancer LNCaP cells.
    Chang PC; Wang TY; Chang YT; Chu CY; Lee CL; Hsu HW; Zhou TA; Wu Z; Kim RH; Desai SJ; Liu S; Kung HJ
    PLoS One; 2014; 9(2):e88556. PubMed ID: 24551118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PAX6 promotes neuroendocrine phenotypes of prostate cancer via enhancing MET/STAT5A-mediated chromatin accessibility.
    Jing N; Du X; Liang Y; Tao Z; Bao S; Xiao H; Dong B; Gao WQ; Fang YX
    J Exp Clin Cancer Res; 2024 May; 43(1):144. PubMed ID: 38745318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activation of TGF-β - SMAD2 signaling by IL-6 drives neuroendocrine differentiation of prostate cancer through p38MAPK.
    Natani S; Sruthi KK; Asha SM; Khilar P; Lakshmi PSV; Ummanni R
    Cell Signal; 2022 Mar; 91():110240. PubMed ID: 34986386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMPK/SIRT1 signaling through p38MAPK mediates Interleukin-6 induced neuroendocrine differentiation of LNCaP prostate cancer cells.
    Natani S; Dhople VM; Parveen A; Sruthi KK; Khilar P; Bhukya S; Ummanni R
    Biochim Biophys Acta Mol Cell Res; 2021 Sep; 1868(10):119085. PubMed ID: 34171447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The central role of Sphingosine kinase 1 in the development of neuroendocrine prostate cancer (NEPC): A new targeted therapy of NEPC.
    Lee CF; Chen YA; Hernandez E; Pong RC; Ma S; Hofstad M; Kapur P; Zhau H; Chung LW; Lai CH; Lin H; Lee MS; Raj GV; Hsieh JT
    Clin Transl Med; 2022 Feb; 12(2):e695. PubMed ID: 35184376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer.
    Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS
    Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.