BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37543329)

  • 41. Sediment phosphorus mobility in Võrtsjärv, a large shallow lake: Insights from phosphorus sorption experiments and long-term monitoring.
    Tammeorg O; Nürnberg GK; Tõnno I; Kisand A; Tuvikene L; Nõges T; Nõges P
    Sci Total Environ; 2022 Jul; 829():154572. PubMed ID: 35306066
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Internal phosphorus loading in a chain of eutrophic hardwater lakes in Saskatchewan, Canada.
    Wauchope-Thompson MS; Baulch HM; Cade-Menun BJ
    Sci Total Environ; 2024 May; 924():171493. PubMed ID: 38458448
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controls of Geochemical and Hydrogeochemical Factors on Arsenic Mobility in the Hetao Basin, China.
    Zhang Z; Guo H; Han S; Gao Z; Niu X
    Ground Water; 2023 Jan; 61(1):44-55. PubMed ID: 35899623
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of algal blooms outbreak and decline on phosphorus migration in Lake Taihu, China.
    Wang J; Zhou Y; Bai X; Li W
    Environ Pollut; 2022 Mar; 296():118761. PubMed ID: 34971742
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Conditions affecting the release of phosphorus from surface lake sediments.
    Christophoridis C; Fytianos K
    J Environ Qual; 2006; 35(4):1181-92. PubMed ID: 16738404
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication.
    Yang C; Yang P; Geng J; Yin H; Chen K
    Environ Pollut; 2020 Jul; 262():114292. PubMed ID: 32179221
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Geochemical control processes and potential sediment toxicity in a mine-impacted lake.
    Adeleke SB; Svensson BH; Yekta SS; Adeleye MM
    Environ Toxicol Chem; 2016 Mar; 35(3):563-72. PubMed ID: 26313659
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Factors contributing to the internal loading of phosphorus from anoxic sediments in six Maine, USA, lakes.
    Lake BA; Coolidge KM; Norton SA; Amirbahman A
    Sci Total Environ; 2007 Feb; 373(2-3):534-41. PubMed ID: 17234258
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The role of turbulence in internal phosphorus release: Turbulence intensity matters.
    Li H; Yang G; Ma J; Wei Y; Kang L; He Y; He Q
    Environ Pollut; 2019 Sep; 252(Pt A):84-93. PubMed ID: 31146242
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A process-based model for describing redox kinetics of Cr(VI) in natural sediments containing variable reactive Fe(II) species.
    Ren J; Liu Y; Cao W; Zhang L; Xu F; Liu J; Wen Y; Xiao J; Wang L; Zhuo X; Ji J; Liu Y
    Water Res; 2022 Oct; 225():119126. PubMed ID: 36179427
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessment of mobilization of labile phosphorus and iron across sediment-water interface in a shallow lake (Hongze) based on in situ high-resolution measurement.
    Yao Y; Wang P; Wang C; Hou J; Miao L; Yuan Y; Wang T; Liu C
    Environ Pollut; 2016 Dec; 219():873-882. PubMed ID: 27613325
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Decrease in macrofauna density increases the sediment phosphorus release and maintains the high phosphorus level of water column in Lake Taihu: A case study on Grandidierella taihuensis.
    Li C; Ding S; Cai Y; Chen M; Zhong Z; Fan X; Wang Y
    Water Res; 2022 Oct; 225():119193. PubMed ID: 36209665
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contribution of groundwater discharge and associated contaminants input to Dongting Lake, Central China, using multiple tracers (
    Sun X; Du Y; Deng Y; Fan H; Tao Y; Ma T
    Environ Geochem Health; 2021 Mar; 43(3):1239-1255. PubMed ID: 32794110
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An innovative approach for sequential extraction of phosphorus in sediments: Ferrous iron P as an independent P fraction.
    Gu S; Qian Y; Jiao Y; Li Q; Pinay G; Gruau G
    Water Res; 2016 Oct; 103():352-361. PubMed ID: 27486948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sediment potentially controls in-lake phosphorus cycling and harmful cyanobacteria in shallow, eutrophic Utah Lake.
    Randall MC; Carling GT; Dastrup DB; Miller T; Nelson ST; Rey KA; Hansen NC; Bickmore BR; Aanderud ZT
    PLoS One; 2019; 14(2):e0212238. PubMed ID: 30763352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fe/Mn (oxyhydr)oxides reductive dissolution promoted by cyanobacterial algal bloom-derived dissolved organic matter caused sediment W release during an algal bloom in Taihu Lake.
    Lin J; Chen X; Liu Y; Wang Y; Shuai J; Chen M
    Water Res; 2024 Jun; 260():121899. PubMed ID: 38908314
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chironomid larvae enhance phosphorus burial in lake sediments: Insights from long-term and short-term experiments.
    Hupfer M; Jordan S; Herzog C; Ebeling C; Ladwig R; Rothe M; Lewandowski J
    Sci Total Environ; 2019 May; 663():254-264. PubMed ID: 30711592
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spatiotemporal controls on septic system derived nutrients in a nearshore aquifer and their discharge to a large lake.
    Rakhimbekova S; O'Carroll DM; Oldfield LE; Ptacek CJ; Robinson CE
    Sci Total Environ; 2021 Jan; 752():141262. PubMed ID: 32889253
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of Eh and pH on Phosphorus Geochemistry in Sediments of Lake Okeechobee, Florida.
    Moore A; Reddy KR
    J Environ Qual; 1994 Sep; 23(5):955-964. PubMed ID: 34872208
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Geochemistry and release risk for nutrients in lake sediments based on diffusive gradients in thin films.
    Wu Z; Jiang X; Chen J; Wang S; Yao C
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40588-40607. PubMed ID: 36622617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.