BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3754338)

  • 1. DNA polymerase activity in heat killing and hyperthermic radiosensitization of mammalian cells as observed after fractionated heat treatments.
    Jorritsma JB; Burgman P; Kampinga HH; Konings AW
    Radiat Res; 1986 Mar; 105(3):307-19. PubMed ID: 3754338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cycloheximide on heat-induced cell killing, radiosensitization, and loss of cellular DNA polymerase activities in Chinese hamster ovary cells.
    Chu GL; Dewey WC
    Radiat Res; 1987 Dec; 112(3):575-80. PubMed ID: 3423222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyperthermic killing and hyperthermic radiosensitization in Chinese hamster ovary cells: effects of pH and thermal tolerance.
    Holahan EV; Highfield DP; Holahan PK; Dewey WC
    Radiat Res; 1984 Jan; 97(1):108-31. PubMed ID: 6695037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strand break repair, DNA polymerase activity and heat radiosensitization in thermotolerant cells.
    Jorritsma JB; Kampinga HH; Scaf AH; Konings AW
    Int J Hyperthermia; 1985; 1(2):131-45. PubMed ID: 3836266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glycerol and low pH on heat-induced cell killing and loss of cellular DNA polymerase activities in Chinese hamster ovary cells.
    Mivechi NF; Dewey WC
    Radiat Res; 1984 Aug; 99(2):352-62. PubMed ID: 6540462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA polymerase alpha and beta activities during the cell cycle and their role in heat radiosensitization in Chinese hamster ovary cells.
    Mivechi NF; Dewey WC
    Radiat Res; 1985 Sep; 103(3):337-50. PubMed ID: 4041063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperthermic radiosensitization of thermotolerant Chinese hamster ovary cells.
    Holahan PK; Wong RS; Thompson LL; Dewey WC
    Radiat Res; 1986 Sep; 107(3):332-43. PubMed ID: 3749467
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indomethacin lowers the threshold thermal exposure for hyperthermic radiosensitization and heat-shock inhibition of ionizing radiation-induced activation of NF-kappaB.
    Locke JE; Bradbury CM; Wei SJ; Shah S; Rene LM; Clemens RA; Roti Roti J; Horikoshi N; Gius D
    Int J Radiat Biol; 2002 Jun; 78(6):493-502. PubMed ID: 12065054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heat radiosensitization and the level of DNA polymerases alpha and beta of human colony-forming unit-granulocyte-macrophage and myeloid leukemias sensitive and resistant to chemotherapeutic agents.
    Mivechi NF; Miyachi H; Scanlon KJ
    Cancer Res; 1990 Apr; 50(7):2044-8. PubMed ID: 2317794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of repair of X-ray-induced DNA damage by heat: the role of hyperthermic inhibition of DNA polymerase alpha activity.
    Kampinga HH; Konings AW
    Radiat Res; 1987 Oct; 112(1):86-98. PubMed ID: 3116599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of low intracellular or extracellular pH in sensitization to hyperthermic radiosensitization.
    Chu GL; Dewey WC
    Radiat Res; 1988 Sep; 115(3):576-85. PubMed ID: 3174938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA lesions in hyperthermic cell killing: effects of thermotolerance, procaine, and erythritol.
    Jorritsma JB; Konings AW
    Radiat Res; 1986 Apr; 106(1):89-97. PubMed ID: 3961107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat-induced K+ loss, trypan blue uptake, and cell lysis in different cell lines: effect of serum.
    Ruifrok AC; Kanon B; Konings AW
    Radiat Res; 1987 Feb; 109(2):303-9. PubMed ID: 3809400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The occurrence of DNA strand breaks after hyperthermic treatments of mammalian cells with and without radiation.
    Jorritsma JB; Konings AW
    Radiat Res; 1984 Apr; 98(1):198-208. PubMed ID: 6538985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of the enhancement of radiation sensitivity and DNA polymerase inactivation by hyperthermia in human glioma cells.
    Raaphorst GP; Feeley MM; Chu GL; Dewey WC
    Radiat Res; 1993 Jun; 134(3):331-6. PubMed ID: 8316626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperthermic radiosensitization: mode of action and clinical relevance.
    Kampinga HH; Dikomey E
    Int J Radiat Biol; 2001 Apr; 77(4):399-408. PubMed ID: 11304434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thermotolerance on thermal radiosensitization in hepatoma cells.
    van Rijn J; van den Berg J; Schamhart DH; van Wijk R
    Radiat Res; 1984 Feb; 97(2):318-28. PubMed ID: 6695052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermotolerance as a possible cause of the critical temperature at 43 degrees in mammalian cells.
    Lepock JR; Kruuv J
    Cancer Res; 1980 Dec; 40(12):4485-8. PubMed ID: 7438081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat sensitivity of HeLa S3 cell DNA topoisomerase II.
    Warters RL; Barrows LR
    J Cell Physiol; 1994 Jun; 159(3):468-74. PubMed ID: 8188763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.