BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37543592)

  • 1. Developmental changes in cerebral NAD and neuroenergetics of an antioxidant compromised mouse model of schizophrenia.
    Skupienski R; Steullet P; Do KQ; Xin L
    Transl Psychiatry; 2023 Aug; 13(1):275. PubMed ID: 37543592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox Dysregulation in Schizophrenia Revealed by in vivo NAD+/NADH Measurement.
    Kim SY; Cohen BM; Chen X; Lukas SE; Shinn AK; Yuksel AC; Li T; Du F; Öngür D
    Schizophr Bull; 2017 Jan; 43(1):197-204. PubMed ID: 27665001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo
    Skupienski R; Do KQ; Xin L
    Sci Rep; 2020 Sep; 10(1):15623. PubMed ID: 32973277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain bioenergetics and redox state measured by
    Chouinard VA; Kim SY; Valeri L; Yuksel C; Ryan KP; Chouinard G; Cohen BM; Du F; Öngür D
    Schizophr Res; 2017 Sep; 187():11-16. PubMed ID: 28258794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reversible early oxidized redox state that precedes macromolecular ROS damage in aging nontransgenic and 3xTg-AD mouse neurons.
    Ghosh D; LeVault KR; Barnett AJ; Brewer GJ
    J Neurosci; 2012 Apr; 32(17):5821-32. PubMed ID: 22539844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A developmental redox dysregulation leads to spatio-temporal deficit of parvalbumin neuron circuitry in a schizophrenia mouse model.
    Cabungcal JH; Steullet P; Kraftsik R; Cuenod M; Do KQ
    Schizophr Res; 2019 Nov; 213():96-106. PubMed ID: 30857872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global Metabolic Shifts in Age and Alzheimer's Disease Mouse Brains Pivot at NAD+/NADH Redox Sites.
    Dong Y; Brewer GJ
    J Alzheimers Dis; 2019; 71(1):119-140. PubMed ID: 31356210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NAD
    Chiao YA; Chakraborty AD; Light CM; Tian R; Sadoshima J; Shi X; Gu H; Lee CF
    Circ Heart Fail; 2021 Aug; 14(8):e008170. PubMed ID: 34374300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder.
    Kulak A; Cuenod M; Do KQ
    Behav Brain Res; 2012 Jan; 226(2):563-70. PubMed ID: 22033334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hepatic steatosis induced in C57BL/6 mice by a non-ß oxidizable fatty acid analogue is associated with reduced plasma kynurenine metabolites and a modified hepatic NAD
    Berge RK; Cacabelos D; Señarís R; Nordrehaug JE; Nygård O; Skorve J; Bjørndal B
    Lipids Health Dis; 2020 May; 19(1):94. PubMed ID: 32410680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.
    Xiao W; Wang RS; Handy DE; Loscalzo J
    Antioxid Redox Signal; 2018 Jan; 28(3):251-272. PubMed ID: 28648096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy metabolism and NAD-NADH redox state in brain slices in response to glutamate exposure and ischemia.
    Kannurpatti SS; Joshi NB
    Metab Brain Dis; 1999 Mar; 14(1):33-43. PubMed ID: 10348312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversibility of Age-related Oxidized Free NADH Redox States in Alzheimer's Disease Neurons by Imposed External Cys/CySS Redox Shifts.
    Dong Y; Sameni S; Digman MA; Brewer GJ
    Sci Rep; 2019 Aug; 9(1):11274. PubMed ID: 31375701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The NAD+ /NADH redox state in astrocytes: independent control of the NAD+ and NADH content.
    Wilhelm F; Hirrlinger J
    J Neurosci Res; 2011 Dec; 89(12):1956-64. PubMed ID: 21488092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic Resonance Spectroscopy Studies of Brain Energy Metabolism in Schizophrenia: Progression from Prodrome to Chronic Psychosis.
    Stein A; Zhu C; Du F; Öngür D
    Curr Psychiatry Rep; 2023 Nov; 25(11):659-669. PubMed ID: 37812338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TEMPOL increases NAD(+) and improves redox imbalance in obese mice.
    Yamato M; Kawano K; Yamanaka Y; Saiga M; Yamada K
    Redox Biol; 2016 Aug; 8():316-22. PubMed ID: 26942863
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NBCe1 mediates the regulation of the NADH/NAD
    Köhler S; Winkler U; Sicker M; Hirrlinger J
    Glia; 2018 Oct; 66(10):2233-2245. PubMed ID: 30208253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related decreases in NAD(P)H and glutathione cause redox declines before ATP loss during glutamate treatment of hippocampal neurons.
    Parihar MS; Kunz EA; Brewer GJ
    J Neurosci Res; 2008 Aug; 86(10):2339-52. PubMed ID: 18438923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors.
    Lu W; Wang L; Chen L; Hui S; Rabinowitz JD
    Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Normalization of NAD+ Redox Balance as a Therapy for Heart Failure.
    Lee CF; Chavez JD; Garcia-Menendez L; Choi Y; Roe ND; Chiao YA; Edgar JS; Goo YA; Goodlett DR; Bruce JE; Tian R
    Circulation; 2016 Sep; 134(12):883-94. PubMed ID: 27489254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.